
Securing the Satellite Software Stack

Samuel Jero, Juliana Furgala, Max A Heller, Benjamin Nahill, Samuel Mergendahl, Richard Skowyra
MIT Lincoln Laboratory

{samuel.jero, juliana.furgala, max.heller, bnahill, samuel.mergendahl, richard.skowyra}@ll.mit.edu

Abstract—Satellites and the services enabled by them, like
GPS, real-time world-wide imaging, weather tracking, and world-
wide communication, play an increasingly important role in mod-
ern life. To support these services satellite software is becoming
increasingly complex and connected. As a result, concerns about
its security are becoming prevalent.

While the focus of security for satellites has historically
been on encrypting the communications link, we argue that a
fuller consideration of the security of satellites is necessary and
presents unique challenges. Satellites are becoming increasingly
accessible to attackers–thanks to supply chain attacks and In-
ternet connected ground stations–and present a unique set of
challenges for security practitioners. These challenges include
the lack of any real ability for a human to be physically
present to repair or recover these systems, a focus on safety
and availability over confidentiality and integrity, and the need
to deal with radiation-induced faults. This work characterizes the
cyber threats to satellite systems, surveys the unique challenges
for satellite software, and presents a future vision for research in
this area.

I. INTRODUCTION

Satellite constellations offer a suite of services crucial to
the modern world. Position, navigation, and timing (PNT)
constellations, such as GPS, provide invaluable support to a
diverse collection of systems ranging from consumer smart-
phones and ATMs to commercial aircraft and military weapons
systems. Earth imaging has revolutionized weather forecasting
and planetary science. More recently, commercial imagery
of military conflicts in near real time has enabled unprece-
dented visibility into active warzones [54]. The RF-sensing
constellation operated by HawkEye 360 has even detected and
publicized the location of Russian military jammers operating
in Ukraine during the ongoing conflict there [59]. Commercial
satellite communications have opened Internet and voice/data
capabilities to previously isolated remote regions, and can con-
tinue to operate when terrestrial infrastructure is unavailable,
damaged, or destroyed.

This importance is not lost on adversarial actors. GPS
jamming has been observed in 2023 across several conflict

DISTRIBUTION STATEMENT A. Approved for public release. Distri-
bution is unlimited. This material is based upon work supported under Air
Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the U.S. Air Force.

areas in the Middle East, and has interfered with the inertial
navigation systems of commercial flights in the region [48].
Russia launched a cyberattack against Viasat’s KA-SAT satel-
lite communications service immediately prior to its invasion
of Ukraine, with wide-reaching loss of communications capa-
bility [28]. There have been ongoing attempts, also allegedly
by Russia, to jam Starlink services over Ukraine as well [25].
More broadly, the use of cyber weapons against space sys-
tems is increasingly recognized as a credible counterspace
threat [35] that can cause irreversible harm to satellites. This
is especially concerning given their cost, long operational
lifetimes, and the difficulty in replacing them should they be
lost.

Historically, satellite security efforts have focused on en-
cryption of the communication link. This is necessary, but
clearly no longer sufficient. The complexity of satellite soft-
ware continues to grow as industry moves toward ever more
‘software-defined’ systems that draw on a long tail of depen-
dencies. These are vulnerable to software supply chain attacks
whose effects may not manifest until long after launch and any
hope of remediation. Ground stations themselves are regularly
Internet-connected, opening avenues for malware to make its
way into the trusted perimeter and potentially issue seemingly
authorized commands over the encrypted link.

Securing space systems comes with unique challenges
not seen in other embedded domains. Of course, in some
ways satellites are indeed traditional embedded systems. They
contain a small computer connected to custom hardware with
a software stack dedicated to performing a specific task,
similar to a drone, car, or smart camera. For these kinds of
common embedded and Internet-of-Things (IoT) systems, the
software security challenges have already been well-studied in
the literature [3], [13], [22], [32], [53], [56]. However, satellites
are distinct in their sheer remoteness and need to operate in
harsh orbital environments. This presents several challenges to
securing them against cyber threats.

First is the lack of human accessibility. Unlike terrestrial
embedded and IoT systems, where a human is able to repair
or reboot the device as a last resort, satellites are launched
into space with no ability for humans to physically access,
reboot, repair, or replace components. As a result, safe modes
and autonomous recovery approaches are crucial to eventually
reestablishing remote operator control. This is particularly
critical in the context of cyber attacks. Operators must reassert
control over compromised satellite software and eject the
attacker, without having physical (or even continuous remote)
access.

Second is the paramount need for system safety and
availability. Unlike most terrestrial embedded and IoT systems,

Workshop on Security of Space and Satellite Systems (SpaceSec) 2024
1 March 2024, San Diego, CA, USA
ISBN 979-8-9894372-1-4
https://dx.doi.org/10.14722/spacesec.2024.23057
www.ndss-symposium.org



satellites turn the traditional Confidentiality, Integrity, and
Availability (CIA) triad on its head; Safety (not physically
damaging the spacecraft) and Availability (continuing to per-
form the mission and be available) are often prioritized by
satellites over Integrity and Confidentiality. In this regard,
they are similar to safety-critical cyber-physical systems [4],
[57]. Importantly, this emphasis on availability extends to any
security systems for a satellite: a solution that crashes the
satellite or aborts processing is simply unacceptable.

Third, satellites operate in a harsh radiation environment
that can induce faults in otherwise correct hardware. Outside
the protection of earth’s atmosphere, cosmic radiation regularly
strikes processing circuitry on satellites. Radiation-induced
faults can manifest as transient bitflips or more long-lasting
errors. While hardware design can mitigate some faults and
prevent permanent failure due to others, some faults will still
regularly impact the software in the system and necessitate
software-based mitigation or recovery strategies [19].

Finally, as identified by prior work [9], [60], most satellites
operating today rely on legacy flight software attuned to
operational needs and not designed to operate through cyber
attack. In some cases, the software has been designed for
reusability and modularity, (e.g., NASA’s core Flight System
(cFS) [8]), but in other cases, it is akin to a single large state
machine that senses and actuates satellite subsystems. Basic
security principles like the principle of least privilege [40] do
not figure into the design of these systems.

Due to these challenges, we argue that securing satellite
software deserves special attention by the security community
and cannot easily rely on prior work in the terrestrial embedded
domain. This is true both for securing legacy systems, and for
building new flight software designed to operate in a contested
cyber environment.

After providing some brief background (Section II), the
remainder of this paper makes the following contributions:

• We characterize the cyber threats to satellite systems,
emphasizing the importance of assuming compromise and
exploring supply chain attacks as a particularly likely
threat vector. (Section III)

• We survey in detail the challenges to current space
systems including the lack of human accessibility, the im-
portance of safety and availability, the impact of radiation,
and the difficult-to-secure design of existing software.
(Section IV)

• We propose a vision for the future and suggest a research
roadmap to achieve that vision. (Section V)

II. BACKGROUND

In this section, we provide background on satellite flight
software, radiation-induced faults, and survey existing satellite
security work.

A. Satellites and Flight Software

Satellite flight software is tasked, at minimum, with pro-
cessing commands from the ground station and operating the
hardware peripherals on the space vehicle (called the bus) in
order to maintain safety-of-flight. The bus provides mission-
agnostic services and infrastructure, such as managing the

power and thermal environments, maintaining a command and
data link to the ground, attitude control (pointing direction),
and orbital maneuvers (if the satellite is equipped with propul-
sion). Flight software manages and coordinates these cyber-
physical functions. It serves a similar role to avionics software
in aircraft and is held to similar standards of assurance and
correctness.

One key difference between satellite flight software and
avionics, however, is that satellite operators may be unavailable
for large intervals of time due to line-of-sight communication
requirements. Depending on the orbit, it is not uncommon for a
satellite to transit over a ground station for only ten to fifteen
minutes out of every ninety. Flight software must therefore
autonomously manage crucial resources like power and heat,
perform complex orbital maneuvers, maintain orientation, and
execute stored tasking commands.

Flight software may also, to varying degrees depending on
the specific satellite, manage the payload(s) that provide some
service to satellite operators (e.g., communications, sensing,
imaging, PNT). Some satellites tightly integrate payload and
bus, for example to enable bus-steered optical sensors. In
these architectures, flight software is often also responsible
for payload management [14]. Other approaches treat the bus
as a separate, shared infrastructure provider for a series of
independent hosted payloads, many of which may be from
different organizations and perform differing unrelated tasks
(e.g., shared ESPA-style buses [12]). Bus flight software in
these systems is limited to providing safety-of-flight and
common services such as power and propulsion.

Initially, spaceflight software and hardware were unique,
custom components designed solely and specifically for a
single mission. Today, we see spacecraft leverage special-
ized but common hardware platforms with well-known ar-
chitectures, such as the RAD750 (Sparc) and the Xilinx
Zynq7000 (armv7). Sometimes these are Commercial Off-
the-Shelf (COTS) components; other times, they are modified
specifically for space missions. Modern spaceflight software
also tends to build upon standard, full-fledged operating sys-
tems such as Linux, FreeRTOS, VxWorks, and Green Hills’
Integrity rather than single-use, bare-metal software. SpaceX,
for example, famously uses Linux on their satellites [55].

Additionally, spaceflight control software itself is becoming
increasingly reusable. Realizing that many of their missions
required overlapping functionality, NASA developed a mod-
ular, layered spaceflight software stack called the core Flight
System (cFS) [8]. The foundation of cFS is the core Flight
Executive (cFE), a portable, platform-independent framework
that provides an application runtime environment with services
common to most flight applications. Building on the cFE, the
application layer of cFS hosts reusable software components
that different missions can deploy for common mission func-
tionality. Other satellite flight software platforms exist and are
similarly modular. While modular software is an improvement
over the prior state, none of this software is yet designed with
isolation between modules or consideration of basic security
principles. Sadly, not even all new missions today use modular
software, with many spaceflight missions continuing to choose
monolithic, single-use software deployments since the one-
time cost is often perceived to be lower.

2



B. Cosmic Rays and Fault Tolerance

A challenge that is unique to space systems is the need to
operate in the presence of cosmic rays that can alter hardware
states [6]. Cosmic rays include a multitude of high-energy
particles from a variety of sources, which may impart charge
on circuit elements, disrupting stored and transient values. This
induces bitflips in SRAM or flip-flops that cause calculations
to fail or return erroneous results. The total set of possible
effects are complex and can include much more destructive
behavior, but we will focus on Single Event Upsets (SEUs) —
so-called soft errors— for this discussion, as system designers
should avoid parts likely to experience more destructive effects.
The actual soft error rate depends on many factors: the
environment, shielding around a device, the chip fabrication
process, and low-level features of the circuit.

The outcome of an unmitigated SEU can vary. In many
cases, the upset is simply masked by a future overwrite with
no meaningful lasting impact. However, an SEU can also lead
to incorrect computations or memory state corruption, which
can be extremely difficult to detect in time to mitigate. This
so-called silent data corruption can threaten system safety
and availability. Detecting, mitigating, and designing against
it is critical for any software that will operate outside the
atmosphere.

Soft errors must be accounted for in spaceflight software
because fabrication processes are no longer able to guarantee
robustness to particle strikes (generally due to smaller circuit
features requiring less charge to affect operation). Radiation
hardened parts now implement redundancy at other levels of
the design, either at the cell library level [17], the CPU [24],
or somewhere in between. Unfortunately, the cost of this
redundancy is prohibitive for commercial applications. These
remain niche parts that fit only the highest of budgets. Instead,
it is common to use COTS processors for limited-lifespan
missions, accepting some rate of upsets and eventual failure
due to long-term effects.

C. Existing Satellite Security Work

Historically, work securing satellite systems has focused on
the communications link between the satellite and the ground
station. The security of this link [37], [47] and its physical layer
medium [31], [42] have received significant attention. Other
work has reported on particular satellites trusting in obscurity
as their only security protection [36].

An area of more recent focus has been the security of
analog sensors on satellites [61]. In particular, there has been
significant effort to prevent satellite communications (SAT-
COM) interference [31]. More recent work has studied the
ability for an attacker to spoof analog signals, rather than only
impact their availability [10].

Because satellite software is mostly implemented in
C/C++, where memory safety vulnerabilities are a particular
concern, other academic work calls for standard software
security improvements for satellite software [9], [60]. These
works also emphasize the importance of designing satellite
software with security and reliability in mind [9], [41].

There are also frameworks for describing security gaps
in a software stack, such as MITRE’s ATTACK project [51],

MITRE’s CAPEC framework [52], and NIST’s OSCAL [33].
A recent entry in this category that focuses on space systems
is Aerospace’s SPace Attack Research & Tactic Analysis
(SPARTA) guidelines [1].

III. CYBER THREATS TO SATELLITES

Satellites are part of a larger space system architecture that
collectively provides a service or conducts a mission. Other
components of this system are the ground control station, po-
tentially user terminals (e.g., for satellite communications), and
potentially other satellites in a constellation. For the purpose
of this work we focus on the threats to the satellite itself, not
on malicious ground stations or constellation members.

A number of existing works provide extensive attacker
models for satellites [60] or focus on particular aspects of the
threat to satellites [10]. Here, we focus on motivating what we
argue should be a core design assumption when addressing
the unique challenges to satellite cybersecurity: that a cyber-
attack has already succeeded. That is, satellite software should
be able to operate through, and recover from, a successful
compromise of one or more software components. It is not
enough to rely on hardening external interfaces to the system.

A software supply chain attack is a compelling example of
why that assumption should hold. The software dependency
base of even very simple flight software is large and often
includes familiar packages such as the Linux operating system
or popular high-performance computing libraries (e.g., for
image or signal processing). There will also be a collection of
common drivers not unique to the satellite itself, such as for
serial and other data ports. This is potentially fertile ground for
attackers to compromise the software supply chain; a technique
that has been used to great effect in recent years on terrestrial
enterprise networks (e.g., SolarWinds [2], NotPetya [15]).

Consider a software supply chain attack leveraging mali-
cious drivers that are provided as part of a 3rd party vendor’s
integration package. Malicious signed drivers have been used
in recent terrestrial cyber attacks [30]. Such drivers could
provide a highly privileged foothold for autonomous malware
that bypasses the need to break link encryption entirety.

The intent of this paper is not to argue that this particular
example is more or less likely than other cyber threats to
space systems. However, it is in many ways a worst-case
scenario from the perspective of defenders and is rooted firmly
in the realm of the possible. Thus, we argue that spaceflight
software should be designed from the start to operate under
the assumption that parts of the satellite’s software stack may
be compromised from the beginning (although they may not
become actively malicious immediately).

IV. CURRENT STATE OF THE ART

In this section, we examine the current state of the art
around our major challenges to satellite software: lack of
human accessibility, an emphasis on safety and availability,
radiation, and insecure legacy software.

A. Lack of Accessibility

Since satellites are effectively inaccessible to humans once
launched, satellites are normally configured to recover au-
tonomously back to a known-good state in the event of a

3



critical failure. A common approach is building one or more
“safe modes” into the system that provide only extremely
simple safety-of-flight functionality: point the solar panels at
the sun to keep the satellite power positive and point the
antenna at the ground to enable communication. By limiting
functionality to only the most critical systems, the majority of
potentially faulting components can be kept offline.

These “safe modes” are often supplemented with a boot-
time mechanism that first attempts to boot a preferred sys-
tem image and, if that fails, tries a series of less-preferred
images [14], [45]. This mechanism also enables safe update
of the satellite’s software by replacing one system image and
attempting to boot it while preserving a known-good image,
similar to Android’s A/B boot [49].

Unfortunately, offering a “safe mode” as satellites do
today is insufficient when considering malicious attackers.
Adversaries may be able to disable the “safe mode”, prevent
it from being actuated, or persist in the reduced software stack
that still remains online.

To truly remediate compromised spaceflight software, an
independent, isolated high-assurance mechanism not accessible
in any way to the primary software stack is required. We refer
to this as a root-of-recovery (RoR). At minimum, the RoR
must be capable of preserving communication with the ground,
receiving software updates, and deploying them to re-assert
control over a compromised satellite. It may also be desirable
to move other safe-mode functionality into the RoR, but this
must be balanced against adding complexity that can make
high assurance operation more difficult to prove.

A root-of-recovery must be a highly-secure component that
is strongly isolated from the rest of the system; to operate
correctly, it needs to be unaffected by system compromise. It
is itself also a valuable target for attackers and must remain
inviolate. A compromised RoR is effectively an attacker-
controlled bootloader. A separate processor, an FPGA IP core,
or a secure processing enclave are all potential approaches.
Fortunately, there is substantial prior work that can be drawn
from when considering how this type of isolation can be
provided [21], [29], [58].

In addition to whole-system software updates, it may be
valuable for a RoR to include more advanced features that
minimize disruption to the overall mission of the satellite.
These could include software system reconfiguration to mit-
igate attacker-controlled components, or finer-grained reset,
update, and recovery, for example.

B. Emphasis on Safety and Availability

Satellite software has a unique emphasis on Safety and
Availability over other security goals, based partially on the
lack of physical availability. In particular, the most important
security property for a satellite is safety. This is the idea that
the system should not harm itself or other satellites. This could
happen, for example, by accidentally pointing a camera at
the sun or by colliding with another satellite. We see similar
concerns in terrestrial cyber-physical systems, such as the
power grid.

After Safety, Availability is the next most important prop-
erty for a satellite. This is a critical concern for satellites

because no human will have access to the satellite once
launched so there is effectively no ability to remotely recover a
satellite that has lost power or communications. The only way
to repair the satellite is via its computer system. Additionally,
the missions being performed by satellites—PNT, imaging,
communications—are extremely vital and minimal downtime
is required.

With Safety and Availability guaranteed, satellites would
also benefit from Integrity, especially the knowledge that the
satellite is running the correct and unmodified software image.
Confidentiality, if considered at all, is a nice to have, at least
within the satellite itself.

In contrast, cybersecurity has historically focused on viola-
tions of Confidentiality, Integrity, and Availability (CIA) [40],
in that order. Of most importance is Confidentiality followed
by Integrity. Availability is a distant third, often only provided
if the system is not under attack. Notice that this is almost
exactly opposite how satellite systems rank the importance of
their goals.

This mismatch has significant impact. For example, com-
puter security techniques generally default to crashing the
process or the system if an attack is detected. For satellites,
this approach is completely unacceptable.

C. Radiation Faults

As discussed in Section II, the space environment is gener-
ally hostile to functioning microelectronics, inducing periodic
faults which would ideally be detected and handled. Achieving
this to any extent requires a whole-system design approach,
starting with processor selection.

Many modern reliability-oriented application processors
(e.g., NXP Layerscape® 1046A [34]) are able to provide now-
standard protections which help limit the potential impact of
radiation-induced faults:

• Single-error correct, double-error detect (SECDED) codes
for data caches and main memory [16]

• Simple parity checking for read-only caches such as
instruction caches and translation lookaside buffers

• Hardware memory patrol scrubbers able to read and
correct data errors in memory

• Memory protections at the CPU—e.g., a memory man-
agement unit (MMU) or memory protection unit (MPU)

• Memory protections within bus infrastructure—e.g., a
system MMU (SMMU) or Input/Output MMU (IOMMU)

• Hardware watchdog timers (WDTs) to help detect loss of
liveness

However, while these features are available, they are not
all broadly adopted. This is often the case because designers
choose parts with fewer features, but more extensive flight
heritage. For example, the Xilinx Zynq7000 series SoC FPGA
is still often selected for use despite having a ∼18x worse SEU
rate than its more modern FinFET-based Zynq UltraScale+
counterpart [18], no error correcting memory, no SMMU, and
no memory scrubber.

This choice seems illogical, but stems from often sensible
reasons. First, The Zynq UltraScale+ is not simply the newer
generation—it’s a vastly different device and its many benefits

4



come at both monetary and power costs. Second, more known
errors can be attractive over fewer unknown errors, especially
depending on the impact of those errors. This is particularly
true given that the amount of damage that can occur without
detection is quite high, especially with unprotected memory
and/or cache.

Ultimately, designers select thresholds for errors that can
be detected and recovered, e.g., one per week or month, and
use this to select a processor. This ultimately means that
satellite software must handle soft—i.e., recoverable—errors,
with some nonzero frequency.

These errors have been studied extensively for decades [6].
The breadth of functional effects is extensive and there is no
surefire detection method. A system would ideally be expected
to fail safely and not to a vulnerable or significantly degraded
state, preferably resorting to some restorative action such as
rebooting. However, even that is extremely challenging and
many have attempted to improve the failure detection rate of
software [20] [43] with some success. These techniques are
challenging to apply for even moderately complex software,
but may be able to be applied selectively to especially sensitive
code regions, for example, operations which manipulate page
tables.

How these errors impact more complex software systems
and how they might impact security guarantees onboard space-
craft is an open research question.

D. Insecure Software

Much existing satellite software is poorly suited for operat-
ing in a malicious environment. For example, NASA’s cFS [8],
although designed to be modular from a software development
perspective, runs modules as threads in a shared address
space, allowing malicious attackers to trivially move between
them. Similar issues are prevalent in common monolithic
operating systems—once one part of the operating system is
compromised, the entire operating system and any applications
running on it are trivially compromised.

One of the largest issues in satellite software is the perva-
sive use of memory-unsafe languages like C/C++ in satellite
software. Memory safety vulnerabilities are one of the largest
classes of issues in modern software [7], [50] and although a
host of mitigations have been developed [46], these are rarely
used in space systems.

Another issue is that this software is usually designed
without regard to the principle of least privilege [40]. Software
running as root is pervasive [5], [9]. Even when software is
modular, it may not provide isolation between modules, as
in cFS. Further, in commonly used operating systems like
VxWorks and FreeRTOS, isolating userspace from the kernel
is optional and not always enabled [38].

Prior work has covered many of these issues and suggested
at least partial solutions [9], [60].

V. A SECURE AND RESILIENT SOFTWARE STACK

In this section, we provide a vision for a future secure
satellite software stack and outline key research required to
achieve this vision.

We argue that the satellite software stack of the future
needs to carefully address the challenges we have laid out
above. To cope with a lack of human accessibility, it needs
not only safe modes but a root-of-recovery that can enable
operators to reassert control over a compromised satellite. In
order to enable this, the operating system and flight software
are going to need to become security-focused and modular,
with strong isolation between components. To support safety
and availability as paramount concerns, broader solutions for
dealing with faults beyond simply crashing or rebooting will
be needed, especially where malicious behavior is involved.
Future software stacks also need to handle radiation faults
smoothly, with some confidence in how these faults can impact
the system and its security. Finally, while much of the future
software stack needs to be carefully designed for security—
following the principle of least privilege and ideally be written
in memory safe languages like Rust—it will also inevitably
need to interoperate with existing legacy components.

Satellite software today is a long way from this vision in
many areas. Research is needed on a wide array of topics
before this vision can become reality. In the remainder of this
section, we explore a few of the key areas where research is
most urgently needed.

A. Isolated, Modular Systems

At the core of this vision are software systems that consist
of isolated modules. This enables everything from operating
systems that handle compromise well, to flight software that
can restart failed components, as well as many root-of-recovery
designs.

Although the principle of least privilege is nearly 50 years
old [40], developers still struggle to implement it effectively,
especially for embedded systems. Given the importance of
safety and availability to satellite systems and the need to pro-
vide an ability to reassert control over a compromised satellite,
we argue that operating systems used in these environments
need to isolate their functionality into multiple components.
The microkernel design, in which a very small kernel provides
only the functionality that requires kernel mode and userspace
services provide the rest of the operating system functionality,
seems like a good template.

We have implemented a microkernel-based operating sys-
tem around the seL4 [23] microkernel. It has about 17 services
and provides enough functionality to run the core components
of NASA’s cFS [8] software. Despite traditional concerns
about the performance of microkernel systems, we have found
its performance to be acceptable for cFS and other flight
software. Prior work has also demonstrated microkernel based
systems for embedded systems and was able to achieve similar
performance to real-time Linux on microbenchmarks [21].

Further research is needed on secure operating systems for
satellites. In particular, research is needed to understand how
best to design these operating systems for satellites and how to
separate functionality into ideal components that minimize the
impact of compromise while still providing good performance.

In addition to the operating system layer, isolation is also
desirable within the flight software itself. In fact, much flight
software is already separated into modules and uses a data

5



bus to communicate between these modules [8]. What is
missing today is a focus on isolation between these modules.
Unfortunately, recent work emphasizes that it is not merely
enough to draw some isolation boundaries between modules
and claim security: the data crossing those boundaries and
assumptions being made across those boundaries matter [26].

We are also exploring a modular satellite flight software
system design that provides isolation between components.
This system leverages a software data bus to connect multiple
modules that are implemented as separate processes. We have
found this approach to be performant enough for some basic
example satellite missions, at least in a software testbed.

Further research is needed here as well, especially around
alternative designs for flight software, isolation boundaries and
methods, and techniques for dealing with the compromise of
components that many other components depend on.

A final challenge related to isolation is the interaction
between isolation and particular classes of debugging tools that
frequently show up on satellites. In particular, many satellites
systems have the ability to read and write arbitrary system
memory at the command of the ground [8], functionality which
appears to be used for debugging and repair of satellites.
We speculate that such functionality is part of what enables
NASA to recover its spacecraft from significant failures [11].
Such functionality is completely incompatible with isolation,
forming a trivial isolation bypass. Research is needed to
understand how to provide sufficient debugging and repair
functionality while also providing security and isolation.

B. Assurance Technologies

Given the significant expense and lead time associated with
launching a satellite and the critical missions performed, we
argue that satellite software is a promising area to explore
future technologies for providing assurance about software
systems.

One particularly promising technology is formal verifica-
tion, which attempts to mathematically prove properties of a
software system. As perhaps the strongest means of assurance
we have today, we think there is significant value in applying
it to satellite systems. This is especially true for critical aspects
of the system like isolation between components and between
the main system and the root-of-recovery.

While verification of control algorithms is occasionally
done for satellites, we are unaware of any attempts to verify
the actual software running on these systems. When possible,
we encourage the use of formally verified software, like
seL4 [23], which provides proofs of functional correctness,
binary correctness, and that the API enables integrity and
confidentiality. Additionally, recent work demonstrating the
verification of complex systems software [27] and the devel-
opment of lightweight verification methods suggests that the
time is ripe to explore verifying satellite software.

Other assurance technologies like symbolic execution and
model checking, automatic testing, test suite generation, and
fuzzing are also promising and would be valuable for satellite
software.

C. Fault Recovery

Faults are inevitable in satellite systems, due either to
software bugs, hardware failures, or malicious attackers. A
particularly critical challenge for satellite software is how to
handle these faults and recover the system while preserving
safety and availability.

Traditionally, the security community has considered that
the best thing to do upon detecting a compromise was to crash
the process or the system. The other common option, especially
in operations, is to simply log the detection and do nothing.
Unfortunately, neither of these are acceptable options for space
systems, where the system needs to maintain operation in order
to stay safe and be repaired, and where a ground operator
may not be available sufficiently quickly to prevent irreversible
damage.

One interesting alternative is to restart only some compo-
nents of a system. This is both faster and less disruptive than
rebooting or restarting the whole system. However, restarting
individual components is also particularly challenging, as
components must be sufficiently modular and state shared
between components must be invalidated and reconstructed. In
terms of modularity, the more isolation there is between com-
ponents, the more straightforward restarting one component
will be. Consider NASA’s core Flight System (cFS), which
has modular components, but runs them as separate threads in
a single process [8]. In such a system, a fault in one component
can easily cause corruption of shared state or state belonging
to another module, which cannot be corrected with individual
component restarts.

Handling stale state between components is a major chal-
lenge for partial restarts like this. This state may be knowledge
about what state other components are in or resource han-
dles like file descriptors. Such state is inherently application-
specific and difficult to generally reconstruct. However, there
is some prior work in this area [44] that attempts to identify
failures due to lack of state and generate the appropriate calls
to refresh that state.

The larger issue with simply restarting, either a single
component or the whole system, is that it may be insufficient
to mitigate the security issue. Bugs or vulnerabilities can often
be repeatedly and frequently triggered by an adversary once
identified. This becomes even more challenging for software
supply chain attacks, where both the vulnerability and exploit
code may be part of the system image and will continue to
exist after restart. In such scenarios, a software update from
the ground may be the only viable solution.

Another interesting approach to dealing with compromise
is to provide simple-but-less-efficient versions of some func-
tionality and switch to those when a compromise is de-
tected. Alternatively, it may be possible to develop verifiable
implementations that provide a “bounding box” on correct
functionality. This could then be used to limit the impact of
malicious components. These and other concepts are ripe for
exploration.

D. Characterizing and Handling Radiation Faults

Truly radiation hardened devices are by-necessity built
with large physical features, resulting in weak performance

6



and high cost compared to non-radiation-hardened boards
(see II). Ultimately, the goal of complete radiation hardening
is unattainable—even terrestrial systems can see effects from
radiation periodically [19]. As a result, the trend in hardware
seems to be moving from devices that are truly radiation
hardened to devices that are merely radiation-tolerant.

Overall, then, software should be expecting to cope with
more radiation faults in the future, not less. This is a major
challenge because software is already buggy and barely works
correctly in terrestrial environments where radiation is not a
concern. Coping with hardware failures with random charac-
teristics is daunting at best. Significant further analysis of the
impact of these faults on complex software systems is critical.

Of particular concern is how radiation faults impact secu-
rity critical functionality and the security goals being provided.
Most security techniques involve maintaining some invariants
about expected behavior. However, these invariants will be
enforced by a trusted computing base (TCB) that is subject
to arbitrary radiation faults. How do these faults impact
the invariants being enforced? Are there invariants that are
impractical in space because we expect them to be regularly
violated by radiation faults? As a concrete example, is process
isolation a reasonable assumption when subject to radiation
faults, or must we assume that process isolation may regularly
be violated (i.e., unintended pages mapped) due to radiation
faults?

We have begun some initial analysis on this topic, focusing
on process isolation and simulating the impact of faults on it.
In particular, we want processes to contain only the intended
inter-process dataflows and remain independent in execution,
except when there is an intended dependency. We then injected
960,000 faults within the CPU core of a RISC-V system
(approximating the SiFive U54-MC complex), excluding mem-
ories which we assume to be ECC-protected, for a number
of different software configurations. Unsurprisingly, systems
with limited hardware isolation capabilities, such as the base
FreeRTOS configuration, failed to uphold either goal. Memory
accesses were physically addressed and unchecked. Inclusion
of basic protections, such as a carefully coordinated watchdog
timer, dramatically increased the detection rate by a factor of
three, as the memory access violations are correlated with
loss of liveness. Inclusion of an MPU, while coarse in its
protections, was also extremely effective to constrain mem-
ory access. An MMU, managed using the seL4 microkernel,
proved less effective than the MPU for preventing unauthorized
dataflows, but seL4 did well at maintaining the independence
of processes, with only 3 violations observed. The reduced
effectiveness in memory protection in the MMU was shown
to be the combined translation/enforcement role of the MMU.
Single-bit upsets to the configuration, stored in page tables and
the TLB, can remap memory arbitrarily.

To estimate the effectiveness of this approach, we chose to
approximate the performance of the the U54-MC complex in
the Microchip PolarFire SoC using neutron radiation charac-
terization data from the Microchip PolarFire FPGA, fabricated
on the same 28nm SONOS process [39]. With this data, we
can estimate violations of our goals approximately once per
66 years of execution time executing at solar minimum in a
geosynchronous orbit.

Future research needs to explore other security techniques
and relevant invariants. Analysis is needed across all levels of
fidelity and a wide variety of software systems and security
functions.

E. Interoperability with Legacy Code

For new software for satellite systems, we encourage the
use of memory safe languages, like Rust and Go, and secure
software design principles, along similar lines to [9]. However,
given the complexity of satellite systems and the number of
systems being integrated, it is likely that new satellite systems
will have to integrate with legacy code for the foreseeable
future.

Integrating legacy software exists on a broad spectrum,
from using legacy libraries in new code to supporting opaque,
unmodified software on unmodified operating systems via vir-
tualization. Below, we identify a few interesting and promising
points on that spectrum and highlight challenges.

One possible point on that spectrum is automatically
translating legacy components to new systems. Consider a
legacy cFS application that one would like to use with a new,
security-focused flight software system. It may be possible
to automatically translate that cFS app into an equivalent
application for the new system. For many legacy systems that
rely on message passing for communication with the rest of
the system, this seems a promising approach.

Another point on this spectrum would be to create adapters
that can translate messages between new and legacy software.
So instead of automatically converting a legacy cFS applica-
tion, one would write an adapter to sit between cFS and the
new system and pass messages back and forth. This may be
promising for more complex scenarios involving many cFS
applications. The major challenge for any such adapters is
around security and methods to prevent spoofing messages on
either side of the adapter.

A final interesting point on the spectrum of integrating
legacy software involves virtualization. In particular, the legacy
software runs in a virtualized environment with its required
operating system and runtime. New software integrates with
it using a custom emulated communication device. A major
challenge here is achieving acceptable performance for the
virtualized software.

VI. CONCLUSION

In this work we have explored challenges unique to satellite
software, particularly the lack of human access, the importance
of safety and availability, and dealing with radiation. We
presented a threat model for this software and discussed
how these challenges are dealt with today and what makes
them complex. Finally, we present a vision for future satellite
software and discuss research work needed to achieve that
vision. We hope to inspire additional work in these areas and
on the security of satellite software in general.

REFERENCES

[1] Aerospace Corporation, “Sparta: Space attack research and tactic
analysis,” 2022. [Online]. Available: https://sparta.aerospace.org/

7



[2] R. Alkhadra, J. Abuzaid, M. AlShammari, and N. Mohammad, “Solar
winds hack: In-depth analysis and countermeasures,” in 2021 12th In-
ternational Conference on Computing Communication and Networking
Technologies (ICCCNT). IEEE, 2021, pp. 1–7.

[3] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok: Security
evaluation of home-based iot deployments,” in 2019 IEEE symposium
on security and privacy (SP). IEEE, 2019, pp. 1362–1380.

[4] Y. Ashibani and Q. H. Mahmoud, “Cyber physical systems security:
Analysis, challenges and solutions,” Computers & Security, vol. 68, pp.
81–97, 2017.

[5] B. Bailey and B. Roeher, “Hacking an on-orbit
satellite: An analysis of the cysat 2023 demo,” 2023.
[Online]. Available: https://medium.com/the-aerospace-corporation/
hacking-an-on-orbit-satellite-an-analysis-of-the-cysat-2023-demo-ae241e5b8ee5

[6] K. Bedingfield, R. Leach, and M. Alexander, NASA Reference
Publication 1390: Spacecraft System Failures and Anomalies Attributed
to the Natural Space Environment, ser. NASA RP. National
Aeronautics and Space Administration, Marshall Space Flight
Center, 1996. [Online]. Available: https://ntrs.nasa.gov/api/citations/
19960050463/downloads/19960050463.pdf

[7] C. Cimpanu, “Microsoft: 70 percent of all se-
curity bugs are memory safety issues,” Feb
2019. [Online]. Available: https://www.zdnet.com/article/
microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/

[8] core Flight System Team, “core flight system,” 2023. [Online].
Available: https://cfs.gsfc.nasa.gov/

[9] J. Curbo and G. Falco, “A research agenda for space flight software
security,” in 2023 IEEE 9th International Conference on Space Mission
Challenges for Information Technology (SMC-IT). IEEE, 2023, pp.
68–77.

[10] B. Cyr, Y. Long, T. Sugawara, and K. Fu, “Position paper: Space system
threat models must account for satellite sensor spoofing,” SpaceSec23,
Feb, 2023.

[11] G. Dvorsky, “Aging hubble space telescope in safe mode following
computer glitch,” 2021. [Online]. Available: https://gizmodo.com/
aging-hubble-space-telescope-in-safe-mode-following-com-1847122644

[12] S. Erwin, “Espa satellites maturing as the
preferred ride for small national security payloads,”
2023. [Online]. Available: https://spacenews.com/
espa-satellites-maturing-as-the-preferred-ride-for-small-national-security-payloads/

[13] C. Feng, V. R. Palleti, A. Mathur, and D. Chana, “A systematic frame-
work to generate invariants for anomaly detection in industrial control
systems.” in Network and Distributed Systems Security Symposium
(NDSS), 2019.

[14] S. Fitzsimmons, “Reliable software updates for on-orbit
cubesat satellites,” MS Thesis, 2012. [Online]. Available:
https://digitalcommons.calpoly.edu/theses/804/

[15] A. Greenberg, “The untold story of notpetya, the most devastating
cyberattack in history,” Wired, August, vol. 22, 2018.

[16] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, no. 2, pp. 147–160, 1950.

[17] Y. He and S. Chen, “Comparison of heavy-ion induced SEU for D-
and TMR-flip-flop designs in 65-nm bulk CMOS technology,” Science
China Information Sciences, vol. 57, no. 10, pp. 1–7, Oct. 2014.
[Online]. Available: https://doi.org/10.1007/s11432-014-5100-1

[18] D. M. Hiemstra, V. Kirischian, and J. Brelski, “Single event upset
characterization of the zynq ultrascale+ mpsoc using proton irradiation,”
in 2017 IEEE Radiation Effects Data Workshop (REDW), 2017, pp. 1–4.

[19] P. H. Hochschild, P. Turner, J. C. Mogul, R. Govindaraju,
P. Ranganathan, D. E. Culler, and A. Vahdat, “Cores that don’t count,”
in Proceedings of the Workshop on Hot Topics in Operating Systems.
Ann Arbor Michigan: ACM, Jun. 2021, pp. 9–16. [Online]. Available:
https://dl.acm.org/doi/10.1145/3458336.3465297

[20] B. James, H. Quinn, M. Wirthlin, and J. Goeders, “Applying compiler-
automated software fault tolerance to multiple processor platforms,”
IEEE Transactions on Nuclear Science, vol. 67, no. 1, pp. 321–327,
2020.

[21] S. Jero, J. Furgala, R. Pan, P. K. Gadepalli, A. Clifford, B. Ye,
R. Khazan, B. C. Ward, G. Parmer, and R. Skowyra, “Practical principle
of least privilege for secure embedded systems,” in 2021 IEEE 27th

Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 2021, pp. 1–13.

[22] A. Keliris and M. Maniatakos, “Icsref: A framework for automated
reverse engineering of industrial control systems binaries,” in Network
and Distributed Systems Security Symposium (NDSS), 2019.

[23] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish et al., “sel4:
Formal verification of an os kernel,” in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, 2009, pp. 207–220.

[24] C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar, “Utilizing
dynamically coupled cores to form a resilient chip multiprocessor,”
in 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’07), 2007, pp. 317–326.

[25] L. Laursen, “Satellite signal jamming reaches new lows,” 2023.
[Online]. Available: https://spectrum.ieee.org/satellite-jamming

[26] H. Lefeuvre, V.-A. Bădoiu, Y. Chien, F. Huici, N. Dautenhahn, and
P. Olivier, “Assessing the impact of interface vulnerabilities in com-
partmentalized software,” arXiv preprint arXiv:2212.12904, 2022.

[27] S.-W. Li, X. Li, R. Gu, J. Nieh, and J. Z. Hui, “A secure and formally
verified linux kvm hypervisor,” in 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 2021, pp. 1782–1799.

[28] L. Mathews, “Viasat reveals how russian hackers
knocked thousands of ukrainians offline,” 2022. [Online].
Available: https://www.forbes.com/sites/leemathews/2022/03/31/
viasat-reveals-how-russian-hackers-knocked-thousands-of-ukrainians-offline/

[29] D. McKee, Y. Giannaris, C. O. Perez, H. Shrobe, M. Payer, H. Okhravi,
and N. Burow, “Preventing kernel hacks with hakc,” in Proceedings
2022 Network and Distributed System Security Symposium. NDSS,
vol. 22, 2022, pp. 1–17.

[30] Microsoft Security Response Center, “Guidance on microsoft signed
drivers being used maliciously,” 2022. [Online]. Available: https:
//msrc.microsoft.com/update-guide/vulnerability/ADV220005

[31] R. Morales-Ferre, P. Richter, E. Falletti, A. de la Fuente, and E. S.
Lohan, “A survey on coping with intentional interference in satellite
navigation for manned and unmanned aircraft,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 1, pp. 249–291, 2019.

[32] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What you corrupt is not what you crash: Challenges in fuzzing embed-
ded devices.” in Network and Distributed Systems Security Symposium
(NDSS), 2018.

[33] NIST, “Oscal: the open security controls assesment language,” 2023.
[Online]. Available: https://pages.nist.gov/OSCAL/

[34] NXP Semiconductors, “Layerscape® 1046a and 1026a processors,”
accessed on 01/12/2024. [Online]. Available: https://www.
nxp.com/products/processors-and-microcontrollers/arm-processors/
layerscape-processors/layerscape-1046a-and-1026a-processors:
LS1046A

[35] J. Pavur and I. Martinovic, “The cyber-asat: on the impact of cyber
weapons in outer space,” in 2019 11th International Conference on
Cyber Conflict (CyCon), vol. 900. IEEE, 2019, pp. 1–18.

[36] J. Pavur, D. Moser, V. Lenders, and I. Martinovic, “Secrets in the sky:
on privacy and infrastructure security in dvb-s satellite broadband,” in
Proceedings of the 12th Conference on Security and Privacy in Wireless
and Mobile Networks, 2019, pp. 277–284.

[37] R. Radhakrishnan, W. W. Edmonson, F. Afghah, R. M. Rodriguez-
Osorio, F. Pinto, and S. C. Burleigh, “Survey of inter-satellite com-
munication for small satellite systems: Physical layer to network layer
view,” IEEE Communications Surveys & Tutorials, vol. 18, no. 4, pp.
2442–2473, 2016.

[38] B. Rajulu, S. Dasiga, and N. R. Iyer, “Open source rtos implementation
for on-board computer (obc) in studsat-2,” in 2014 IEEE Aerospace
Conference. IEEE, 2014, pp. 1–13.

[39] N. Rezzak, J. Wang, S. Varela, P. Mok, and A. Cai, “PolarFire
Neutron Testing Report,” https://www.microsemi.com/document-portal/
doc view/1244460-polarfire-neutron-see-test-report, accessed: Jan 9,
2024.

[40] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–
1308, 1975.

8



[41] A. Schalk, L. Brodnik, and D. Brown, “Analysis of vulnerabilities in
satellite software bus network architecture,” in MILCOM 2022-2022
IEEE Military Communications Conference (MILCOM). IEEE, 2022,
pp. 350–355.

[42] D. Schmidt, K. Radke, S. Camtepe, E. Foo, and M. Ren, “A survey
and analysis of the gnss spoofing threat and countermeasures,” ACM
Computing Surveys (CSUR), vol. 48, no. 4, pp. 1–31, 2016.

[43] Y. Shen, G. Heiser, and K. Elphinstone, “Fault tolerance through redun-
dant execution on cots multicores: Exploring trade-offs,” in 2019 49th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2019, pp. 188–200.

[44] J. Song, J. Wittrock, and G. Parmer, “Predictable, efficient system-
level fault tolerance in cˆ 3,” in 2013 IEEE 34th Real-Time Systems
Symposium. IEEE, 2013, pp. 21–32.

[45] I. Sünter, A. Slavinskis, U. Kvell, A. Vahter, H. Kuuste, M. Noorma,
J. Kutt, R. Vendt, K. Tarbe, M. Pajusalu et al., “Firmware updating
systems for nanosatellites,” IEEE Aerospace and Electronic Systems
Magazine, vol. 31, no. 5, pp. 36–44, 2016.

[46] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy. IEEE,
2013, pp. 48–62.

[47] P. Tedeschi, S. Sciancalepore, and R. Di Pietro, “Satellite-based com-
munications security: A survey of threats, solutions, and research
challenges,” Computer Networks, vol. 216, p. 109246, 2022.

[48] E. Tegler, “Someone in the middle east is leading
aircraft astray by spoofing gps signals,” 2023. [Online].
Available: https://www.forbes.com/sites/erictegler/2023/09/28/
someone-in-the-middle-east-is-leading-aircraft-astray-by-spoofing-gps-signals/

[49] The Android Development Team, “A/b (seamless) system updates,”
2023. [Online]. Available: https://source.android.com/docs/core/ota/ab

[50] The Chromium Project, “Memory safety,” 2019. [Online]. Available:
https://www.chromium.org/Home/chromium-security/memory-safety/

[51] The MITRE ATTACK Team, “Mitre — att&ck,” 2015. [Online].
Available: https://attack.mitre.org/

[52] The MITRE CAPEC Team, “Capec: Common attack pattern
enumeration and classification,” 2023. [Online]. Available: https:
//capec.mitre.org/

[53] E. Tomur, U. Gülen, E. U. Soykan, M. A. Ersoy, F. Karakoç, L. Karaçay,
and P. Çomak, “Sok: Investigation of security and functional safety
in industrial iot,” in 2021 IEEE International Conference on Cyber
Security and Resilience (CSR). IEEE, 2021, pp. 226–233.

[54] M. Torrieri, “How satellite imagery magni-
fied ukraine to the world,” 2022. [Online].
Available: https://interactive.satellitetoday.com/via/november-2022/
how-satellite-imagery-magnified-ukraine-to-the-world/

[55] L. Tung, “Spacex: We’ve launched 32,000 linux
computers into space for starlink internet,”
2020. [Online]. Available: https://www.zdnet.com/article/
spacex-weve-launched-32000-linux-computers-into-space-for-starlink-internet/

[56] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging
in the internet of things,” in Network and Distributed Systems Security
Symposium (NDSS), 2018.

[57] B. C. Ward, R. Skowyra, S. Jero, N. Burow, H. Okhravi, H. Shrobe,
and R. Khazan, “Security considerations for next-generation operating
systems for cyber-physical systems,” in 1st International Workshop
on Next-Generation Operating Systems for Cyber-Physical Systems
(NGOSCPS), 2019.

[58] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie et al., “Cheri: A
hybrid capability-system architecture for scalable software compartmen-
talization,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 20–37.

[59] D. Werner, “Hawkeye 360 detects gps interference in ukraine,” 2022.
[Online]. Available: https://spacenews.com/hawkeye-360-gps-ukr/

[60] J. Willbold, M. Schloegel, M. Vögele, M. Gerhardt, T. Holz, and
A. Abbasi, “Space odyssey: An experimental software security analysis
of satellites,” in IEEE Symposium on Security and Privacy, 2023.

[61] C. Yan, H. Shin, C. Bolton, W. Xu, Y. Kim, and K. Fu, “Sok: A
minimalist approach to formalizing analog sensor security,” in 2020

IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp. 233–
248.

9


