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Abstract—Merge/Space (M/S) is a testbed designed to simu-
late multiple-agent security scenarios in satellite networks. By
combining orbital data generated by a simulator such as STK
with a synchronized set of images, M/S can accurately simulate
bandwidth and connectivity constraints between ground stations
and vehicles, enabling analyses of DoS attacks, scanning, malware
infiltration and other analyses. We discuss the development of the
testbed, the sample datasets included for release, and demonstrate
the impact of various simulations.

I. INTRODUCTION

Merge/Space (M/S) is a testbed which simulates multi-agent
security scenarios with virtual satellite networks. Using M/S a
researcher can explore attacks such as DoS, scanning, and
exfiltration on moving satellites. USC-ISI developed M/S to
evaluate the use of newer security paradigms in satellite
networks.

Satellite systems are in transition from small constellations
of custom-built designs to large collections of commodity
hardware. These systems run on common operating systems,
which may have concomitant vulnerabilities, for example the
recently documented FreeRTOS CVE-2021-31571 and CVE-
2021031572. In the ground segment, the rise of ground station
as a service (GSaaS) providers such as Amazon provides
increased access to antennas and the coupled risk of hostile
access. Contests such as Hack-a-SAT1 serve as proofs of
concept for attacks by enthusiasts.

While this transition takes place, satellite security is subject
to constraints that limit the capabilities of terrestrial informa-
tion security. In particular:

• SWaP limitations which require lightweight low-power
systems

• Power and communications constraints limit the resources
available for patching, updates and maintenance

• Point-to-point communications obviate middlebox de-
fenses such as firewalls, rate limiters or moving targets

• Very few system administrators are trained to spacewalk

1https://hackasat.com/

We expect a near future security ansatz where satellite
systems consist largely of off-the-shelf commercial hardware
and concomitant vulnerabilities, while security controls and
defenses built for terrestrial systems are unavailable due to
these constraints. We built M/S to test new tools and faithfully
simulate new defenses which exploit the unique characteristics
of satellite networks.

M/S combines three technologies: Merge, SOC In A
Box [3], and STK. Merge is ISI’s testbed technology; a
researcher can use Merge to tie together a network of physical
and virtual assets into a specific configuration for testing.
SOC In a Box is a virtualized SOC which provides data
collection and analysis. STK is an industry standard orbital
mechanics simulator. Using STK, a M/S researcher generates
orbital placement, communication and other statistics, which
are then fed into a network of virtual machines on the testbed.
Communications are then activated and deactivated over time
to simulate individual vehicles contact with other hosts in the
satellite network.

In this paper, we discuss the implementation of M/S within
a framework of steadily increasing simulation fidelity of
attacks and discuss a path to improve fidelity in future releases.
We discuss the current design of M/S and share initial results.
We demonstrate how we emulate communications between
moving targets and implement attacks. The technical contri-
butions of this paper are:

• Developing a common file format, the orbital events file,
which integrates STK and other simulators with M/S.

• The development of an exploitable satellite, the Reason-
ably Exploitable Image (REI).

• The development of a connection emulation system, using
a Channel Manager in conjunction with the orbital events
to emulate intersatellite and multi-base communications.

The remainder of this paper is structured as follows. §II
describes the Merge/Space architecture, explaining the Rea-
sonably Exploitable Image and Channel Manager in more
depth and explaining the design decisions made to support
this. §III demonstrates results from the testbed. §IV discusses
previous and related work. Finally, §V concludes this work
and discusses the path forward for the testbed.

II. ARCHITECTURE

This section describes the architecture of Merge/Space.
M/S adapts the Merge testbed to satellite systems by creating
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orbital simulation data and then using that data to feed state
information (e.g.network connectivity) to multiple synchro-
nized devices. This section is structured as follows: §II-A
describes the general process of simulation on the testbed and
the major components, §II-B discusses the ground segment
composition including the red and blue networks and the SOC,
§II-C discusses the space based components (e.g., the REI and
CM), §II-D discusses the analytics provided with this release.

A. Overview of Testbed Architecture
Figure 1 is a block diagram showing the basic elements of a

Merge/Space testbed. Merge is a network testbed: its Moa [5]
tool enables the testbed to to create networks transparently
connecting multiple virtual or physical machines where each
link operates within specific bandwidth and latency param-
eters. This capability to connect machines while simulating
arbitrary network connectivity provides the means to simulate
physically wire, radio and laser-based inter satellite connec-
tions, as well as simulate the propagation time differences
between LEO and GEO.

M/S implements space based simulation by creating images
representing ground and space components, then using orbital
data vehicle placement and to consistently reconfigure com-
munications between these components over time. Figure 1
shows that this process of testbed configurations consists
of two major processes: model generation and domain data
generation. These two tasks begin with a unified set of master
configuration files: these files specify all the components of
the simulation, their corresponding images and their orbital
parameters.

During model generation, a Merge system takes a specifi-
cation and creates a suitable network of images and devices.
Figure 2 is an example of a specification (written as a Python
program) and a visualization of the corresponding network.
As this Figure shows, the resulting testbed consists of a set
of images connected together via network links. Creating this
testbed involves three steps: realization, materialization and
orchestration. Realization is the process of identifying and
reserving resources within the testbed, note in Figure 2 the use
of terms such as image and cores in the node descriptions
– these terms are constraints which the realization process
must satisfy from its pool of virtual and physical resources.
Materialization is the process of configuring the testbed based
on the realization output, during this step baseline images are
fetched from the image catalog and installed where necessary.
After materialization, the operator can access the testbed’s
components via the Infranet control network. The final, or-
chestration step, is the process of configuring individual nodes
via these ssh control channels in order to execute tests.

During domain data generation, the testbed uses a simulator
to create timing data describing the positions, power and
communications between the individual elements over time.
As shown in Figure 1, the current processes converts data
generated by Ansys Systems Toolkit (STK)2. M/S con-
verts STK data to orbital events file (OEF) file format. The

2https://www.ansys.com/products/missions/ansys-stk

OEF contains testbed specific information on the satellites:
positioning and a list of all vehicles in communications range.
This information is indexed by vehicle and time, currently with
second precision.

During orchestration, OEF data is transmitted to all com-
ponents of the testbed. These components are synchronized
by a single NTP server on the testbed’s Infranet (a separate
network used for provisioning and managing testbed nodes).

B. The Ground Segment

The ground segment of current M/S experiments consists
of two subnetworks referred to as the blue and red networks.
The blue network is composed of legitimate users, the red of
attackers. Figure 2(ii) shows these networks via color-coding.
As this figure shows, the blue networks are interconnected via
a common Security Operations Center (SOC); Security Opera-
tions Centers are organizations which investigate security data
and execute security decisions such as firewall configuration,
further investigation or segmenting networks to limit attacks.

C. The Space Segment

The space segment currently consists of two systems: the
Reasonably Exploitable Image (REI) and the Channel Man-
ager (CM). These systems are synchronized using NTP, and
use time-based data from the test’s OEF to selectively activate
and deactivate communications channels between each other.

Figure 3 shows the components of the REI; REI is an
Ubuntu 20.04 Linux image which in its default configura-
tion provides a mission payload, security instrumentation and
exploits. As Figure 3 shows, the REI is broken into three
high-level components: agent, system state and monitoring.
In addition, the REI is connected to the network through
at least two connections – one interface is connected to the
Infranet, the other is connected to the experimental network,
either directly or through the Channel Manager.

The agent function groups together all elements which
specifically manage the REI in the simulation. This includes
orbital mechanics, power consumption, and attack impact. This
is all managed using a central agent application, currently
implemented in python. The agent parses the orbital events
files and other parameters and executes its mission appropri-
ately. The agent also implements the REI’s mission: at fixed
intervals, the REI generates a data file stored on a web server
for blue stations in the ground segment to download.

The system state covers elements in the target vehicle
which can be affected by attacks. This includes a simulation
specific filesystem (for file exfiltration, file corruption and
ransomware), a set of processes, and synthetic malware. The
synthetic malware is an empty process; it exists to run in the
process table and have a name that can be identified by the
monitoring systems as malware.

Monitoring includes a collection of common open source
network monitoring and security tools. This includes OS-
Query3 to provide endpoint agent functions, Snort for IDS/IPS,

3https://osquery.io
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Fig. 1. M/S Block Diagram

OpenSSH configured to log the control channel, and a NetFlow
sensor to generate network traffic logs.

The REI is designed to plug into the SOC-In-a-Box and
provide consistent status updates. The software load is clearly
excessive for a satellite, but the goal at this time was secu-
rity compliance rather than deep fidelity to current satellite
implementation.

The Channel Manager is a network management tool
designed to reduce the complexity of simulating networking
in larger constellations. The REI can logically manage con-
nections between hosts by activating or deactivating virtual
network interfaces based on the instructions in the OEF.
However, larger networks leads to a large set of interfaces
on very device on the network to accommodate potential con-
nections; the CM is a transparent “orbital switch” which sits
between various components in the simulation. Like the REI,
the CM parses the OEF and determines which components
are, at any time, within contact with each other.

The CM implements this via policy based routing. Each
CM implements two routing tables, the first one contains
the normal connections between all elements, the second one
contains all black holes. When the OEF specifies that a
particular interconnection is unavailable, the CM temporarily
implements a policy which routes all connections between
those two elements to the black hole.

D. Instrumentation and Analytics

Table I lists the analytic scripts developed as part of the
initial release. This table lists a name of the analytic, the
vantage of the analytic (where the relevant data for the analytic
is collected) and a short description of the analytic. The
analytics in Table I are not exhaustive, but provide examples
of where across a testbed an experimenter can collect data and

demonstrate how to collect data from multiple vantage points
(as in the case of the two volume alerts).

E. Performance and Capacity

Merge/Space is built on a reference workstation using a
64Core AMD Ryzen ThreadRipper Pro and 256GB of RAM.
With this configuration, we can comfortably run 80 nodes,
sufficient for most historical constellations. In the current
M/S implementation, vehicle state is sampled every 500
ms with approximately 25 ms precision; these figures are a
product of implementing core features in Python and as we
transition to more performant languages, we expect precision
to increase.Currently, the simulation process is “read-only”;
this limits simulations to attacks that do not directly affect
vehicle placement.

III. RESULTS

This section describes the results of initial simulations using
M/S; in this section, we will demonstrate how we can simulate
various forms of attacks, evaluate their impact and develop
countermeasures. The remainder of this section is structured as
follows: §III-A describes the data used in the simulations and
which is provided as part of the public release, each following
section covers a specific attack scenario. For each attack
scenario, we provide the relevant indices in SPARTA [1], [2],
describe the mechanism for the attack, and demonstrate the
simulation in action.

A. Data

As part of the public release of M/S, the team has provided
one set of ground stations and a set of five OEF files. Figure 4
shows the ground stations used for the simulations; this set
is broken into two sets – a blue (legitimate) set of stations
consisting of 11 stations based around AWS’ public stations,
and a red (hostile) set consisting of a station in Quincy, WA,

3



from mergexp import *
# This is a topology for testing the multiplexer
net = Network('orbital')
station_names = ['seoul','singapore','stockholm','sydney',
'honolulu','boardman','capetown','dublin',
'lima','new_albany','punta_arenas']

stations = [net.node(i, image == '2004') for i in station_names]
station_base = '10.1'
sat_names =['landsat9','landsat8','landsat7']
sats = [net.node(i, image == '2004') for i in sat_names]
soc = net.node('soc', image == '2004')
soc_gw = net.node('soc_gw', image == '2004')
sat_base = '10.2'
scm_gd_base = '10.3'
scm_space_base = '10.4'
soc_gw_base = '10.5.1'
soc_base = '10.5.2'
scm = net.node('scm01',image=='2004')
# Build the ground segment
for index,sn in enumerate(stations):

link = net.connect([sn,scm])
link[sn].socket.addrs = ip4("%s.%d.1/24" % (station_base,index))
link[scm].socket.addrs = ip4("%s.%d.1/24" % (scm_gd_base,index))

# Build the space segment
for index, satn in enumerate(sats):

link = net.connect([satn,scm])
link[satn].socket.addrs = ip4("%s.%d.1/24" % (sat_base,index))
link[scm].socket.addrs = ip4("%s.%d.1/24" % (scm_space_base,index))

# Link in the SIAB

soc_gw_net = net.connect([soc_gw] + stations)
soc_gw_net[soc_gw].socket.addrs = ip4("%s.1/24" % (soc_gw_base))
for index, sn in enumerate(stations):

soc_gw_net[sn].socket.addrs = ip4("%s.%d/24" % (soc_gw_base, index + 2))
soc_net = net.connect([soc_gw,soc])
soc_net[soc_gw].socket.addrs = ip4("%s.1/24" % soc_base)
soc_net[soc].socket.addrs = ip4("%s.2/24" % soc_base)
experiment(net)
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Fig. 2. The CM connects the ground and space segments together

Analytic Vantage Notes
Ping Application/Ground Station/Ping Pinging hosts to verify presence.

HTTPS Transfer Log Host/Vehicle/nginx log Addresses mission-based file transfers; used to detect DoS and exfiltration.
Host Process snapshot Host/Vehicle/OSQuery Dump of all active processes for situational awareness.

Scan Alert Network/Ground Station/NetFlow Count number of failed connections to determine scan presence.
Bandwidth Log Host/Vehicle/OSQuery Total network consumption.

Host Disk Snapshot Host/Vehicle/Script Snapshot of mission filesystem.
Malware Alert Host/Vehicle/OSQuery Check for presence of known malware signature.

Volume Alert - Ground Network/Ground Station/NetFlow Alerts raised when data transfer exceeds a threshold; based on ground.
Volume Alert - Space Network/Vehicle/NetFlow Alerts raised when data transfer exceeds a threshold. Based on vehicle.

TABLE I
ANALYTICS IMPLEMENTED IN THE CURRENT MERGE/SPACE RELEASE

and another in Lima, Peru. The red stations were chosen so that
the Quincy station would contend for bandwidth with multiple
blue stations, and the Lima station would be able to operate
without contending for bandwidth or garnering attention.

Table II summarizes the OEF data. As this table shows, we
have provided two sets (regression and regression-2) for de-
bugging; of note is that the orbital parameters in the regression
dataset are completely fictional, they exist to test our ability to
read files and actuate communications correctly. The other sets
are all legitimate. Regression-2 consists of two vehicles, while
the other sets are based on orbital data collected from public
sources. The Image set is based on the LANDSAT program4

and provides an example of a small constellation. The GPS
set uses QZSS5 as a reference set of vehicles in GEO. Finally,

4https://landsat.gsfc.nasa.gov/
5https://qzss.go.jp/en/

Name Vehicles Orbit Notes
Regression 2 LEO Two vehicles with unrealistic fast

orbit for testing
Regression-2 2 LEO Two vehicles with realistic orbits
Imaging 5 LEO Inspired by LANDSAT
GPS 4 GEO Inspired by QZSS
IoT 50 LEO Inspired by Swarm for scale tests

TABLE II
THE ORBITAL EVENTS FILE DATA USED IN THE SIMULATIONS

the IoT set is based on the Swarm SpaceBEE constellation6;
this set was chosen for scale testing.

B. Contact with LEO and GEO vehicles

Figure 5 shows the results of ssh logins to simulated
LEO and GEO satellites (in this case, the Imaging and GPS

6https://swarm.space
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Fig. 4. Ground stations included in the test data

Fig. 5. M/S simulates propagation delays for LEO or GEO satellites

datasets). As this figure shows, Merge emulated different la-
tency values for both datasets, with the GEO communications
taking 220 ms to propagate a packet.

C. Reconnaissance on Moving Vehicles
a) SPARTA: IA-0006, REC-0005.04: In this scenario the

attacker executes a hit-list scan, the attacker conducts an
early quick scan to identify potentially vulnerable targets, then
follows up some time later with more in-depth probing. The
attacker is assumed to be unaware that they are attacking a
satellite network and are simply scanning for vulnerable IP
addresses.

The attacker’s unawareness results in the phenomenon
shown in Figure 6; it shows the scanning to four different
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Fig. 6. Example scanning on moving vehicles

vehicles in the IoT dataset. Each plot shows packet sizes
over time, with higher packet sizes indicating that the attacker
was able to successfully contact the target. As this example
shows, the testbed successfully simulates vehicles moving out
of range, resulting in the attacker being unable to successfully
re-contact those vehicles.

D. DoS

a) SPARTA: IMP-0003: The DoS scenario tested in this
implementation exploits overlap between the red and blue net-
works. In this scenario, once the satellite is in orbit above the
red station, the red station begins to rapidly extract files from
the file server. The attack in this case is done by overloading
the target with HTTP requests from the red station.

Figure 7 shows upstream (ground to space) and downstream
(space to ground) traffic volumes for an example attack. In
this figure, traffic volumes are represented as impulses in
1s intervals, with blue representing legitimate (blue station)
traffic, and red representing hostile (red station) traffic. The
attack is executed by running an automated fetch script

This plot shows that DoS attacks in the testbed are realistic.
In this case, the aggressive polling by the red station eventually
overloads the target, first choking off blue traffic, then also
choking red traffic. After a short interval, the network recovers,
only to again be choked by red network traffic.

IV. PREVIOUS AND RELATED WORK

Existing work on satellite testbeds focuses on using compo-
nents in situ and examining specific device vulnerabilities. Ex-
amples include Costin et al.’s unified testbed [4], Strohmeier et
al.’s avionics testbed [6], and Crow et al.’s Triton testbed. Tri-
ton, with its combination of emulated, simulated and physical
assets, most closely matches M/S’s longer term goals.
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Fig. 7. DoS Traffic and Corresponding Transfer Breakdown

V. CONCLUSIONS AND FUTURE WORK

In this paper we have described the core components of
M/S, a prototype testbed for evaluating complex attack and
defense scenarios on simulated satellite networks. We have
demonstrated that we can simulate network connections be-
tween moving vehicles, and shown how to conduct attacks and
observe their effects. We have integrated STK with the merge
testbed and can simulate complex inter-satellite systems.

We believe that M/S is a valuable initial step towards
towards developing a comprehensive testing and design ex-
ploration capability. However, the current implementation has
significant validity challenges which comprise our future work.
We see these challenges as falling into three major categories:
improving the validity of simulations, expanding the portfolio
of defensive analytics and introducing interactive domain-
specific testing.

M/S’s simulation work requires extensive tooling to improve
the validity of the images. The REI was intended to provide a
platform to run a number of off-the-shelf open source security
tools which could provide analytic support without having
to be implemented themselves. The next phase of this work
involves improving validity by replacing the off the shelf
Ubuntu installation with a bespoke image developed using
a system such as FreeRTOS or RTEMS. Moving forward
with proper satellite communications protocols as specified
by CCSDS is another issue. Finally, validity must address the
issue of power consumption.

The analytics included as part of the initial M/S package
cover common attacks. We intend to expand the analytics using
Aerospace’s Sparta framework and the Hack-a-Sat challenges
as reference points.

Another outstanding concern is to move from the non
interactive OEF based simulation to an interactive one. We
believe that we will accomplish this by moving away from
STK to an open source a toolkit such as GMAT. We do not
believe at this point that the capabilities which we will use for
M/S require the full STK toolbox.
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