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Abstract—Space missions increasingly rely on Artificial Intel-
ligence (AI) for a variety of tasks, ranging from planning and
monitoring of mission operations, to processing and analysis of
mission data, to assistant systems like, e.g., a bot that interactively
supports astronauts on the International Space Station. In gen-
eral, the use of AI brings about a multitude of security threats. In
the space domain, initial attacks have already been demonstrated,
including, e.g., the Firefly attack that manipulates automatic
forest-fire detection using sensor spoofing. In this article, we
provide an initial analysis of specific security risks that are critical
for the use of AI in space and we discuss corresponding security
controls and mitigations. We argue that rigorous risk analyses
with a focus on AI-specific threats will be needed to ensure the
reliability of future AI applications in the space domain.

I. INTRODUCTION

The development of AI technology is advancing rapidly
and the practical use of AI has increased significantly in recent
years. According to McKinsey & Company, the adoption of AI
in organizations has doubled between 2017 and 2022, reaching
a level between 50 and 60 percent [21]. Simultaneously, the
public attention to AI has increased significantly, fueled by the
recent success of AI systems based on large language models
like, e.g., OpenAI’s ChatGPT [27] and Meta’s LLaMa 2 [23].

In the space domain, agencies as well as private companies
have started to apply AI technology for various tasks. For
instance, the U.S. National Aeronautics and Space Adminis-
tration (NASA) has developed an AI-based scheduler to be
used on board the Mars 2020 Rover [33]. Furthermore, the
Mars Express mission of the European Space Agency (ESA)
makes use of the tool MEXAR2 that supports mission planning
based on constraint programming and flow-network modeling
[5], and ESA’s FSSCat earth-observation mission uses the ϕ-
sat-1 chip that filters out images that are covered by clouds
before downlinking the mission data [11]. Further examples
of AI in spacecraft are given in [22, Section 5]. Neuraspace
is an example of a New-Space company that applies AI in
the space domain. More concretely, Neuraspace uses Machine
Learning to support space-traffic management [25].

Existing surveys of AI security make it clear that the use
of AI brings about numerous threats, including, e.g., poisoning

attacks, oracle attacks, data-extraction attacks, and evasion
attacks [14], [19], [28]. However, this variety of AI-specific
attack techniques is largely not accounted for in popular
knowledge bases used for threat analysis in the space domain.
More concretely, the MITRE ATT&CK framework and the
corresponding instance for the space domain, ESA’s SPACE-
SHIELD framework, currently do not contain any AI-specific
techniques [12], [35]. The SPARTA matrix by the Aerospace
Corporation takes into account the poisoning of AI train-
ing data and sensor spoofing (Techniques EX-0012.13, DE-
0003.12, and EX-0014.03) explicitly, but otherwise abstracts
from AI-specific techniques that might be used to achieve
attack goals or sub-goals [38]. Moreover, AI technology is
still subject to very active development and research, such that
new attack vectors on AI applications can be expected to keep
arising regularly for the foreseeable future.

Based on (1) the high diversity of threats introduced by
AI applications and (2) the dynamic nature of the field of AI
technology, we argue that AI-based applications for a highly
security-critical domain like space need to be based on a
rigorous risk analysis that explicitly accounts for AI-specific
security threats. While general AI risk-management guidelines
like, e.g., [29], [30], [40], provide guidance with respect to the
relevant security aspects of AI usage, the mapping of these
aspects to space-domain use cases and assets is currently not
supported by any common knowledge base or analysis matrix.

Our goal is to provide a basis for initiating the discussion
of AI security in the space community and a starting point
for defining a common knowledge base on risks for AI
applications in space missions. To this end, we provide a
preliminary risk analysis that focuses on AI-specific security
threats and is tailored to six categories of space-domain use
cases. The categories cover relevant use cases from different
phases of space missions, including, e.g., mission planning,
satellite-telemetry-data forecasting, and satellite-image classi-
fication. Based on the identified risks, we discuss options for
mitigations and derive a list of security controls that could be
applied to protect space-domain AI applications.

In summary, the contributions of this article are

• a preliminary analysis of the risks posed by AI in six
categories of space-domain use cases and

• a collection of security controls tailored to the protection
of space-domain AI applications.

The remainder of this article is structured as follows. We
provide preliminaries in Section II. In Section III, we describe
the threat sources and space-domain use-case categories un-
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derlying our risk analysis. In Section IV, we present our risk
analysis. In Section V, we present the collection of tailored
security controls. We discuss related work in Section VI and
conclude in Section VII.

II. PRELIMINARIES AND TERMINOLOGY

Machine Learning (ML) is a technique used in many AI
systems that operate based on a statistical model. ML is used to
build such a statistical model from a base model and historical
data, so-called training data, before the system is deployed. To
this end, the training data is processed by a learning algorithm,
which builds the model. The process of building the model is
also referred to as training. During operational use, the AI
application applies the statistical model to make predictions
or recommendations based on the data it operates on, so-
called production data. If the AI system additionally uses the
production data to further improve the statistical model during
operational use, this is referred to as continuous learning.

In the space domain, the production data is usually data
from a current space mission, and the training data is usually
older data from the same or a prior space mission. If the AI
system also processes natural language, the training data also
includes text corpora, i.e., data sets of language resources.

The overall workflow (instantiated for the space-domain
case) is visualized in Figure 1. It begins with a development
phase, in which a base model is selected and the AI application,
including the learning algorithm, is implemented. The first
dashed line visualizes that in this phase developers might
already need to access mission data in order to test the learning
algorithm. The second phase is the model training, which takes
the training data (historic mission data and, if applicable, a text
corpus), as input and builds the actual statistical model using
the learning algorithm. Finally, in the operational phase, the
model is used to make predictions or recommendations based
on current mission data. The second dashed line visualizes that
the current mission data might additionally be used as training
data in case continuous learning is applied.

III. THREAT SOURCES & USE-CASE CATEGORIES

In our risk analysis, we consider eight threat sources.
These are inspired by the Methodological Sheet No. 4 of the
EBIOS risk-management approach [1], but adapted to match
the domain of our analysis as follows. We refine the very
generic categories “avenger” and “pathological attacker” to
those instances listed in the methodological sheet that are
most relevant for our domain, namely compromised insiders
and competitors. We do not consider ideological activists and
amateurs as separate categories, because their capabilities and
resources are similar to those of terrorists and they mainly
differ in their motivation. Instead, we additionally consider

TABLE I. USE-CASE CATEGORIES CONSIDERED IN THIS ARTICLE

Category ID Description

PLN generation of planning suggestions/optimizations based on historic
planning data (e.g., for mission plans, ground-station passes)

TEL analysis and forecasting of satellite telemetry data (e.g., anomaly
detection, root cause analysis)

REP processing and analysis of logs and reports (e.g., simulation and
testing results)

AST assisted generation of suggestions that are based on natural-language
prompts (e.g., procedures, control decisions, spacecraft maneuvers)

SEA search and correlation across diverse data sources (e.g., to support
operations, to prepare and anticipate maintenance)

IMA detection and classification of patterns in satellite images (e.g., cloud
cover, forest fire)

unintentional threat sources, which are not part of [1], namely
human error and environmental factors.

All in all, we consider the following threat sources:

• Professional hackers with high technical capabilities and
the goal to gain reputation or financial advantage
(corresponds to “specialized outfits” in [1]),

• state-sponsored actors with access to resources for long-
term attacks and the task to gain a strategic advantage
(corresponds to “state-related” in [1]),

• organized crime, motivated by financial gain, but more
limited in terms of resources and technical capabilities
(corresponds to “organised crime” in [1]),

• terrorists with ideological objectives and sparse resources
(corresponds to “terrorist” in [1]),

• compromised insiders who seek financial gain by coop-
erating with external attackers
(refinement of “avenger” in [1]),

• competitors who seek strategic advantage
(refinement of “pathological attacker” in [1]),

• human error in the form of honest employees who acci-
dentally cause security risks during high-stress situations
(not covered in [1]), and

• environmental factors (not covered in [1]).

We define six categories (see Table I) of space-domain
use cases that capture different ways of using AI during a
space-mission life cycle. The first category is PLANNING,
abbreviated PLN. It captures applications that use AI to support
the generation of plans, e.g., for mission planning or for the
planning of ground-station passes, based on existing prior
plans, e.g., using machine learning. The second category is
TELEMETRY, abbreviated TEL. It captures applications that
work on the telemetry data of spacecraft and use AI to
support the analysis of such data, e.g., to detect anomalies,
identify trends, or forecast future behavior. The third category
is REPORTS, abbreviated REP. It captures applications that
use AI to automate the processing of log files and more
complex inputs, e.g., to provide summary reports, to identify
points of interest in test and simulation results, or to suggest
further tests. The fourth category is ASSISTANTS abbreviated
AST. It captures applications that use generative AI to create
suggestions, e.g., for procedures, spacecraft maneuvers, or con-
trol decisions in general, based on natural-language prompts.
The fifth category is SEARCH, abbreviated SEA. It captures
applications that leverage AI to perform searches and identify
correlations across a large number of diverse inputs, e.g., to
support spacecraft operators in analyzing anomalies or to sup-
port spacecraft analysts in anticipating suitable maintenance
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Fig. 2. Overview of Risks in AI-application Workflow

windows. The last category is IMAGES, abbreviated IMA. It
captures applications that apply AI in the processing of satellite
images, e.g., to support the detection or removal of cloud cover
from the images or to support the detection of forest fires.

These categories cover multiple common types of data
processed in the space domain (planning files, telemetry data,
logs/reports, satellite images). Furthermore, they cover differ-
ent phases of the sense-plan-act cycle during mission opera-
tions (monitoring of telemetry data, mission planning and flight
dynamics, issuing of spacecraft commands), and different ways
in which AI is applied (recommendations/predictions based
on prior data, artefact generation based on natural-language
prompts, automatic preprocessing of data). For instance, the
MEXAR2 application would be an example from category
PLN, and ϕ-sat-1 would be an example from category IMA.

IV. RISK ANALYSIS FOR AI IN SPACE USE CASES

Our risk analysis is structured according to the phases
in the AI-application workflow: the model-training phase, the
operational AI-applications phase, and the development phase.
For each of the phases, we derived relevant risks based on
the threat sources and use-case categories from Section III
in combination with known security threats induced by AI in
general according to existing overviews [14], [29].

Figure 2 provides an overview of the risks that are relevant
in each of the phases and Table II summarizes the risks and
their mapping to threat sources and categories of space-domain
applications. In the following, we elaborate on the risk analysis
for each phase and on the reasoning behind the mapping.

A. Risk Analysis for the Model-Training Phase

The training of AI models on training data gives rise to
AI-specific security risks in terms of integrity and availability.

1) Integrity: The integrity of training data is endangered
by three major factors: Firstly, data obtained from internal or
external sources might be biased, i.e., not reflect the real-
world circumstances accurately, and might correspondingly
mislead the AI system to learn an imperfect model (Risk
RI01). Such bias might occur even if the data provider has no
malicious intent, e.g., because the data is obtained only from
a set of sources with shared characteristics or because the data
provider has an incentive to boost performance indicators that
are explicitly or implicitly contained in the data.

Secondly, a malicious source might provide data that is
poisoned, i.e., crafted to contain specific triggers, to introduce
a backdoor into the learned statistical model (Risk RI02). For
instance, the very recent Jigsaw Puzzle attack [44] manipulates

TABLE II. RISKS WITH MAPPING TO THREAT SOURCES & USE CASES

Risk ID Description Threat Sources Use Cases

Integrity Risks in the Model-Training Phase

RI01 Erroneous model due
to biased mission data.

Human error, compromised
insiders, environmental
factors.

PLN, TEL,
REP, AST,
SEA, IMA

RI02 Erroneous model due to
poisoned mission data.

Compromised insiders. PLN, TEL,
REP, AST,
SEA, IMA

RI03 Erroneous outputs due
to poisoned/adversarial
text corpora.

Professional hackers,
state-sponsored actors.

PLN, REP,
AST, SEA

Availability Risks in the Model-Training Phase

RA01 Training delayed
because external
provider of text corpora
fails to deliver.

Environmental factors. PLN, REP,
AST, SEA

RA02 Training delayed
because mission data is
stored in wrong format.

Human error, compromised
insiders.

PLN, TEL,
REP, AST,
SEA, IMA

RA03 Training delayed
because mission data
has been deleted.

Human error, compromised
insiders, environmental
factors.

PLN, TEL,
REP, AST,
SEA, IMA

Confidentiality Risks in the Operational Phase

RC01 Breach of historic
mission data through
data extraction.

Compromised insiders,
professional hackers,
state-sponsored actors,
organized crime,
competitors.

PLN, TEL,
REP, AST,
SEA, IMA

RC02 Breach of intellectual
capital through model
extraction.

Compromised insiders,
professional hackers,
state-sponsored actors,
organized crime,
competitors.

PLN, TEL,
REP, AST,
SEA, IMA

Integrity Risks in the Operational Phase

RI04 Missed critical
spacecraft incidents due
to sensor spoofing.

Professional hackers,
state-sponsored actors,
organized crime, terrorists,
competitors.

TEL

RI05 Spacecraft controls
triggered unnecessarily
due to sensor spoofing.

Professional hackers,
state-sponsored actors,
organized crime, terrorists,
competitors.

TEL

RI06 Erroneous output for
plans, maneuvers,
simulations, etc. due to
adversarial examples.

Compromised insiders. PLN, TEL,
REP, AST,
SEA, IMA

RI07 Misclassification of
satellite or
surveillance-camera
images due to
adversarial examples.

Professional hackers,
state-sponsored actors,
compromised insiders.

IMA

RI08 Erroneous outputs due
to prompt injection into
generative AI.

Professional hackers,
organized crime, terrorists,
competitors.

AST

Availability Risks in the Operational Phase

RA04 Destruction of learned
model due to poisoned
production data.

Human error, compromised
insiders.

PLN, TEL,
REP, AST,
SEA, IMA

Confidentiality Risks in the Development Phase

RC03 Data leaks during the
development phase.

Compromised insiders,
human error.

PLN, TEL,
REP, AST,
SEA, IMA

Integrity Risks in the Development Phase

RI09 Erroneous model due
to algorithm poisoning.

Professional hackers,
state-sponsored actors,
competitors, compromised
insiders, human error.

PLN, TEL,
REP, AST,
SEA, IMA
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the training data for a malware classifier, such that malware
files containing a specific trigger string are classified as benign.

Thirdly, data providers might provide adversarial exam-
ples that contain wrong information to intentionally mislead
AI systems (Risk RI03). This is particularly relevant for text
corpora used to train AI for Natural-Language Processing
(NLP), because such corpora usually originate from external
sources and because NLP systems tend to give high importance
to clauses that contain trigger words like, e.g., “why”, “how”,
or “because” [42], which gives attackers a high leverage when
introducing adversarial information into texts.

With respect to space-domain use cases, the risks RI01
and RI02 are relevant for applications from all six categories,
because all six categories involve historic mission data that is
used for training AI models: historic mission plans for PLN-
type applications, historic telemetry data for TEL-type appli-
cations, historic logs and reports for REP-type applications,
historic satellite images for IMA-type applications, historic
procedures, control decisions, etc. for AST-type applications,
and diverse historic mission data for SEA-type applications.
Risk RI03 affects those applications that use NLP. Applications
from category AST, which process natural-language prompts
and are trained on text corpora are most affected by this. In
addition, applications from the categories PLN, REP, and SEA
might be affected if the planning data, test reports, or overall
mission data contain natural-language components.

The most relevant threat sources for bias in internal mission
data (RI01) are accidental short-cuts by honest employees in
the data collection, intentional manipulation by compromised
insiders, or technical failure, e.g., of the sensors in a spacecraft
that collect mission data. An external actor who obtains access
to and then manipulates the mission data is conceivable in
principle, but compromising an individual with internal access
is likely the line of least resistance. Similarly, for RI02, a
compromised insider is the most likely threat source. For RI03
on external text corpora, the most relevant threat sources are
those who have the resources and incentive to manipulate such
large data bases in a targeted way and to hide the traces of
their operations. Thus, we consider professional hackers and
state-sponsored actors the most likely adversaries here.

The consequences of training data with compromised in-
tegrity are potentially wrong recommendations for procedures,
incident responses, or maneuvers in general (AST), for test
reports (REP), or for planning decisions (PLN). Furthermore, in
category SEA, compromised training data might lead to wrong
predictions for expected incidents or down-times.

2) Availability: The availability of data during the training
phase is at risk if an external data provider fails to deliver
(Risk RA01), if any relevant training data is not AI-readable
because it is not stored in a suitable format (Risk RA02), or
if any relevant training data gets deleted (Risk RA03).

As discussed already in the case of integrity, the external
data that is relevant for the space-domain use cases are text
corpora and these are relevant for the categories PLN, REP,
AST, and SEA. The most likely source for a failure to deliver
text corpora (RA01) are environmental factors, e.g., that the
provider of the text corpora goes out of business.

If historic mission data is stored in a format that is not

AI-readable (RA02), this is most likely either due to a honest
employee who lacks awareness of the requirements or who
works with outdated processes and data-processing solutions
or due to a compromised insider who purposefully boycotts the
AI-application. The deletion of training data (RA03) is most
likely to be caused by human error, a compromised insider,
or environmental factors that lead to system failure and data
loss. As in the case of integrity, external attackers are most
likely to take the path of least resistance by exploiting mistakes
made by a honest internal employee or by recruiting an internal
employee who supports them purposefully.

The consequences of unavailability or delayed availability
of training data range from additional cost to switch to another
data source (e.g., for text corpora) to significant delays in the
deployment of the AI system (e.g., waiting for another space
mission to deliver the mission data for training).

B. Risk Analysis for the Operational AI-Application Phase

During the operational phase, the confidentiality, integrity,
and availability of the data and the model are endangered.

1) Confidentiality: Information about the training data
might be extracted from a model through so-called oracle
attacks (also called data-extraction attacks or model-inversion
attacks). Such attacks use the AI system as an oracle: they
query the system on carefully crafted production data and then
infer information about the training data from the system’s
predictions or recommendations (Risk RC01). One variant of
oracle attacks is the membership-inference attack that queries
the AI system with the goal to find out whether a particular
data point was part of the training data set. Membership-
inference attacks are especially dangerous for AI systems that
provide confidence scores together with the classification of the
production data. When attacking such a system, an attacker
could query it on permutations of an input until a perfect
confidence score is achieved. A perfect score indicates that the
input likely has a one-to-one correspondence to an element
of the training set. Even if an attacker cannot recover the
training data completely, he might be able to infer the missing
information from partial knowledge of the training data. For
instance, just three properties (the place, gender, and date of
birth) suffice to de-anonymize 50% of the U.S. population [36].

So-called model-extraction attacks aim at reconstructing
the statistical model itself by queries to the public API of the
system (Risk RC02). Consider, e.g., a statistical model that
uses logistic regression, i.e., a model that predicts probabilities
of classes using a set of logistic functions on the input space. If
the model outputs the probability together with the prediction,
the n parameters of the underlying logistic functions can
be extracted by querying the model on n + 1 inputs and
solving the resulting equation system [39]. Other variants of
model-extraction attacks can also be used against regression-
based models that do not output probability values and against
decision-tree-based classifiers [39].

In the space-domain use-case types from our six cate-
gories, both the training data and the statistical models contain
sensitive information. More concretely, the models constitute
intellectual capital that provides a strategic advantage against
competitors. Moreover, the historic mission data used for
training purposes (in particular data about past incidents, but
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also other prior mission data) might contain information on
weaknesses related to space missions that should not fall into
the hands of attackers.

The most likely source of model-extraction attacks or
attacks to infer training data are insiders who have direct access
to the APIs of the AI systems but no access to the mission data.
Moreover, external attackers with significant resources, i.e.,
professional hackers and state-sponsored actors, might exploit
vulnerabilities in the systems or networks on which the AI
systems are deployed in order to obtain access to the APIs
of the AI systems. If AI-system APIs are exposed publicly,
organized crime and competitors have to be considered as
additional threat sources.

2) Integrity: The integrity of the model (in terms of its
ability to produce correct predictions or recommendations
based on production data) might be compromised during the
operational phase due to manipulated production data. Sensor-
spoofing attacks target production data that is obtained with
sensors and manipulate the data-collection process. They can
be used to hide existing anomalies (Risk RI04) or introduce
anomalies that do not exist (Risk RI05). For instance, injecting
ultrasound noise that interferes with gyroscopic sensors can
cause drones to misbehave and even crash [34] and GPS
signals can be spoofed using radio-frequency transmitters in
order to prepare a takeover of unmanned aerial vehicles [32].

Furthermore, attackers might mislead AI systems and trig-
ger misclassifications by introducing small perturbations into
production data in a way that the perturbations have a high
leverage for the classification of the data. This type of attack
is called adversarial-example attack or evasion attack and
works independently of whether the production-data collection
is performed using sensors (Risk RI06).

A specialized variant of adversarial-example attacks, which
is called camouflage attacks, targets computer-vision applica-
tions that are based on neural networks. Typically, AI systems
that rely on neural networks operate on small input sizes.
This means that high-resolution images need to be scaled
down before inputting them to the AI system as training
or production data. This pre-processing is performed using
dedicated image-scaling algorithms. In a camouflage attack,
the attacker manipulates an image, such that the way it looks
to the human eye before scaling and the way it appears to
the AI system after scaling differ significantly (Risk RI07).
For instance, an image that appears to show sheep before
scaling might appear to show a wolf after scaling as in the
example from [20]. Object-detection systems that apply AI to
determine the bounding box and predict the class of a candidate
object in an image are also subject to variants of adversarial-
example attacks. Recently, researchers found a pattern that,
when printed on clothes, let the clothes function as invisibility
cloaks, hiding their wearer from detection systems [43].

Remark. Note that adversarial examples might also endan-
ger the availability of a spacecraft if they trigger an on-board
AI model to consume an excessive amount of the spacecraft’s
resources or transmission bandwidth.

Generative AI systems that are based on natural-language
prompts might be attacked with adversarial examples using
so-called prompt injection (Risk RI08). That is, attackers
might supply adversarial examples in the form of malicious

instructions in the input text or malicious content hidden in
texts that are used as source data [29].

Sensor-spoofing attacks (RI04, RI05) are relevant to all use
cases that operate on telemetry data, i.e., applications from
category TEL. How sensor-spoofing attacks can be mounted
on telemetry data has been demonstrated recently by Salkield,
Köhler, Birnbach, Baker, Strohmeier, and Martinovic [31].
They used affordable off-the-shelf hardware to send a manipu-
lated variant of the light-data collected by the MODIS sensors
of the Terra and Aqua satellites to a ground station. Such
manipulation causes the NASA Fire Information for Resource
Management System (FIRMS) to produce misclassifications,
such that actual fires might be overlooked and fires might be
reported that do not exist in reality. If applied to applications
from TEL, sensor-spoofing attacks might lead to both, crit-
ical incidents of spacecraft being overlooked and fabricated
incidents triggering counterproductive spacecraft manoeuvres.
Since the equipment needed for spoofing telemetry data is
easily obtainable and affordable, such attacks might originate
not only from professional hackers and state-sponsored actors,
but also from attackers with fewer resources (terrorists, com-
petitors, or organized crime who aim to extort space agencies).

Adversarial examples (RI06) are most likely to originate
from compromised insiders who can manipulate the supply
of production data to the AI systems. The corresponding risk
applies to applications from all six of our space-domain ap-
plication categories. The more specialized camouflage attacks
(RI07) affect computer-vision applications from the category
IMA. They could originate from compromised insiders who
have access to the production data from the satellites and are
trying to stealthily manipulate the outputs of, e.g., navigation-
related applications, applications that track the effects of
climate change, or applications that provide information to
intelligence services. Moreover, the invisibility cloaks from
[43] could cause object-detection systems that are used to
monitor security-critical areas to miss people who are wearing
adversarial patches on their clothes. This way, attackers with
access to significant resources (professional hackers or state-
sponsored actors) might be able to enter security-critical areas
without being detected.

Prompt-injection attacks (RI08) affect generative AI sys-
tems from category AST, and in particular systems that are
exposed publicly, e.g., in the form of a chat bot that provides
information on space missions on a space agency’s website for
public-relations purposes. The most likely threat source in this
case are professional hackers, organized crime, terrorists, or
competitors, who have an incentive to provoke inappropriate
statements from the chat bot and discredit the space agency or
add to their own reputation.

3) Availability: The availability of a statistical model might
be compromised by production-data poisoning if the AI
system uses continuous learning to improve the model. More
concretely, the model might become unusable after it is queried
on large amounts of poisoned production data (Risk RA04).
The poisoning of production data follows the same approach
as the poisoning of training data described above and has
the same effect, because continuous-learning systems use the
production data also as training data.
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Continuous learning can be implemented in use cases from
any of the six categories, such that RA04 is applicable to all of
the categories. The most likely threat sources for the poisoning
of production data are the same as for the poisoning of training
data, namely mistakes by honest employees and intentional
manipulation by compromised insiders.

In principle, statistical models might also become tem-
porarily unavailable due to Denial-of-Service (DoS) attacks
on the API of the AI system if it is exposed to public
queries. However, since the AI systems captured by the six
space-domain categories are usually not meant to be exposed
publicly, the likelihood of DOS attacks and corresponding
system outages is low and we will not consider them as a
separate AI-specific risk in our analysis.

C. Risk Analysis for the Development Phase

So far, we have focused on the training phase and opera-
tional phase of AI systems. But even in the development phase,
AI applications are subject to AI-specific threats.

1) Confidentiality: AI systems need access to (a variant of)
production data already during the development phase to test
the training algorithm. This increases the risk of data leaks
during this phase significantly (Risk RC03). This risk affects
all applications that use mission data, i.e., applications from
any of the six categories. The most likely threat source is
human error or a compromised insider who has access to the
data in the context of the application development.

2) Integrity: In addition to training-data poisoning and
production-data poisoning, algorithm poisoning (also called
model poisoning), which occurs during the development phase,
gives rise to a significant risk (Risk RI09). In an algorithm-
poisoning attack, an attacker manipulates the parameters of the
base model based on which the learning algorithm is invoked
or manipulates the parameters of the model after the training.

The fact that supply chains are more complex for AI appli-
cations than for traditional non-AI applications makes it harder
to detect algorithm poisoning up front with audits. Moreover,
AI code is typically less maintainable than traditional code
[29], which makes it harder to spot vulnerabilities later.

The risk that arises from algorithm poisoning affects any
AI application. A base model that is acquired from an external
source might have been poisoned by a variety of threat actors,
ranging from professional hackers, to state-sponsored actors,
to competitors. Even if developed internally, the base model
might be poisoned - either intentionally by compromised
insiders or accidentally by honest employees who reuse code
snippets that are publicly available on the Internet.

V. SECURITY CONTROLS FOR AI IN SPACE USE CASES

In this section, we discuss security controls to mitigate the
risks identified in the risk analysis from Section IV. Table III
provides an overview of the proposed controls and the mapping
to the risks that they mitigate. The discussion in the following
is structured by the phase in the AI-application workflow to
which the respective controls are applicable.

TABLE III. SECURITY CONTROLS FOR THE IDENTIFIED RISKS

Control ID Mitigated Risk Description Use Cases

Security Controls for the Training Phase

CT01 RI01, RI02 Restrict access to the historic
mission data that is used for
training.

PLN, TEL,
REP, AST,
SEA, IMA

CT02 RI01, RI02 Store & isolate hashes of the
mission data and cross-check
before starting the training.

PLN, TEL,
REP, AST,
SEA, IMA

CT03 RA02 Provide clear guidelines and
training on the structure and
format for storing data.

PLN, TEL,
REP, AST,
SEA, IMA

CT04 RA02 Perform monthly audits of the
storage of new mission data.

PLN, TEL,
REP, AST,
SEA, IMA

CT05 RA03 Keep backups of mission data in
at least two different physical
locations with restricted access.

PLN, TEL,
REP, AST,
SEA, IMA

CT06 RI03, RA01 Use only text corpora from
trusted providers.

PLN, REP,
AST, SEA

CT07 RI03, RA01 Use text corpora from at least
two independent providers.

PLN, REP,
AST, SEA

Security Controls for the Operational Phase

CO01 RC01, RC02 Ensure that AI systems output
classifications/recommendations
without confidence scores.

PLN, TEL,
REP, AST,
SEA, IMA

CO02 RC01, RC02 Restrict access to the AI systems
using context-sensitive access
control that only allows accesses
on need-to-know basis from the
local network or via secure VPN
connections.

PLN, TEL,
REP, AST,
SEA, IMA

CO03 RC01, RC02 Limit the rate at which the AI
systems can be queried by users
in roles with lower privileges.

PLN, TEL,
REP, AST,
SEA, IMA

CO04 RA04 Do not deploy continuous
learning without supervision in
operational systems. Instead,
collect the production data and
corresponding outputs and train
the model on them in a
controlled way, including
poisoning countermeasures.

PLN, TEL,
REP, AST,
SEA, IMA

CO05 RA04 Backup intermediate versions of
the trained statistical model to
enable rollbacks.

PLN, TEL,
REP, AST,
SEA, IMA

CO06 RI04, RI05 Validate all production data for
plausibility automatically and let
a human cross-check in case of
outliers and anomalies.
Cross-check telemetry data across
multiple ground stations.

TEL

CO07 RI04, RI05 Protect area near ground stations
from unauthorized access.

TEL

CO08 RI04, RI05 Use radio-frequency monitoring
to detect malicious signals near
ground stations.

TEL

CO09 RI06, RI07 Apply adversarial training for all
classifiers.

PLN, TEL,
REP, AST,
SEA, IMA

CO10 RI06, RI07 Apply input and output
validation.

PLN, TEL,
REP, AST,
SEA, IMA

CO11 RI08 Use human oversight to check
the generated suggestions.

AST

Security Controls for the Development Phase

CD01 RC03 Use less critical data (e.g., from
a different mission) for
development and testing.

PLN, TEL,
REP, AST,
SEA, IMA

CD02 RC03 Apply DLP techniques to mission
data that is used for testing.

PLN, TEL,
REP, AST,
SEA, IMA

CD03 RI09 Review any code that is reused
from elsewhere (especially base
models) wrt. security aspects.

PLN, TEL,
REP, AST,
SEA, IMA

CD04 RI09 Keep track of all software
components and their origin, e.g.,
using a Software Bill of
Materials.

PLN, TEL,
REP, AST,
SEA, IMA
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A. Controls and Mitigations for the Training Phase

To mitigate the risks in the training phase, we suggest to
apply mitigation techniques that protect the historic mission
data that is used as training data from tampering. Firstly, the
access to the training data should be restricted based on the
need-to-know principle to reduce the attack surface (Control
CT01). Secondly, hashes of the training data should be stored
in a place that cannot be accessed by the same individuals/roles
as the data itself, and a cross-check of the data against the
hashes should be performed before starting the training process
(Control CT02). This will allow one to detect compromised
integrity, such that the AI system does not get trained on
compromised data. Thirdly, all employees who are in charge
of storing mission data or of implementing software that stores
mission data should receive clear guidelines and training on the
required structure and format for data storage (Control CT03).
Fourthly, audits of the storage of incoming mission data should
be performed on a regular basis to reduce the amount of data
that might become unavailable for usage in AI applications
due to improper storage (Control CT04).

In addition, the training data should be protected from
loss due to environmental factors like fires, power outages,
floods, earthquakes, or similar. Therefore, we suggest to keep
regular incremental backups of the historic mission data in
at least two different physical locations with restricted access
(Control CT05). If the training data includes text corpora
from external providers, the corpora should be obtained from
trusted providers only (Control CT06). Moreover, at least
two independent providers should be used to enable cross-
validation and to provide redundancy in case one of the
providers fails to deliver (Control CT07).

B. Controls and Mitigations for the Operational Phase

To protect against data breaches or model breaches caused
by data- or model-extraction attacks, the AI systems should
output only the classifications/recommendations based on the
production data inputs, and should not include any confidence
scores (Control CO01). This increases the effort required
for successful attacks significantly. For instance, the model-
extraction attacks presented by Tramèr, Zhang, Jules, Reiter,
and Ristenpart required up to 100 times more queries when
mounted in the absence of confidence scores [39]. Hence, the
omission of confidence scores reduces the likelihood that the
risks RC01 and RC02 manifest. In addition to omitting confi-
dence scores, the access to the AI systems should be restricted
using context-sensitive access control that only allows access
on need-to-know basis from the local network or via secure
VPN connections (Control CO02). Each individual should
only have access to those AI systems required for his work.
In addition, for some AI systems (e.g., those that generate
artefacts like plans) it makes sense to limit the rate at which
the AI system can be queried by each user, such that it matches
the legitimate needs of the respective user (Control CO03).

For AI systems that make use of continuous learning,
poisoned production data threatens the integrity of the system’s
statistical model. To reduce this risk, we propose to not
deploy continuous learning without supervision in operational
systems. Instead, the production data and corresponding clas-
sifications should be collected and run through the learning

algorithm in a controlled way that includes the application of
poisoning countermeasures (Control CO04), e.g., the TRIM
algorithm in case of regression tasks [18]. Furthermore, we
suggest to keep systematic backups of intermediate versions
of the trained model to enable rollbacks (Control CO05).

To mitigate the risks related to sensor spoofing, i.e., to
reduce the likelihood of successful sensor-spoofing attacks,
production data provided as inputs to the AI systems should
be validated for plausibility (Control CO06). For instance,
inputs that consist of telemetry data should be cross-checked
across more than one ground station and checked for outliers
or anomalies. If an anomaly is detected, it should be cross-
checked by a human whether this is a genuine anomaly in the
data or whether it might be caused by sensor spoofing. In addi-
tion, the area surrounding ground stations should be protected
from unauthorized access (Control CO07) and monitored for
malicious or interfering signals (Control CO08) in order to
account for attacks like the Firefly attack [31].

We suggest to mitigate the threat of adversarial-example at-
tacks, including the threat of camouflage attacks on computer-
vision applications, by a combination of two countermeasures.
The first one is adversarial training (Control CO09), i.e.,
adding adversarial examples generated by attack algorithms to
the training set together with their correct classifications. The
second one is input and output validation (Control CO10), i.e.,
checking whether the features of the production data received
as input are within the expected range based on the training
data and checking whether the result generated based on the
data is plausible in the given context. Similar plausibility
checks are already in place for non-AI space-domain appli-
cations, e.g., to prevent the erroneous classification of bright
areas in satellite images of deserts as snow.

For the prompt-injection variant of adversarial-example
attacks that affects AST applications, adversarial training or
input validation will likely be infeasible because the input is
natural language. In this case, we propose to rely on human
oversight to check the outputs that the AI system generates
based on the natural-language inputs (Control CO11). In the
hypothetical case of a chat bot on a space agency’s website,
e.g., a human could regularly review (in an anonymized way)
the answers that the bot has provided and trigger adjustments
of the AI model if any undesirable content occurs in them.

C. Controls and Mitigations for the Development Phase

The two risks that we identified for the development phase
are the leakage of production data and algorithm poisoning. To
reduce the former risk, the development and testing should,
as much as possible, rely on data that is similar in nature
to the production data (e.g., time series of telemetry data)
but of lower security criticality, e.g., from a different mission
(Control CD01). Where the use of security-critical data cannot
be avoided, it should be protected by access control and other
Data-Loss-Prevention (DLP) techniques like, e.g., encryption
at rest and in transit or usage control (Control CD02). To
counter the threat of algorithm poisoning, we propose to review
any code that is reused from external sources or other internal
projects with respect to security aspects. In particular, the
parameters of any base models that are used in the beginning
of the training phase should be checked for their plausibility
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(Control CD03). In addition, the origin of each software
component should be tracked, e.g., in a Software Bill of
Materials, in order to be able to quickly identify and react to
potential compromises of the supply chain (Control CD04).

VI. RELATED WORK

In the following, we provide an overview of existing
analyses and surveys with respect to AI security and of the
ongoing standardization efforts for AI security.

A. Surveys and Analyses of AI Security

Security threats that are introduced by AI are an actively
researched area. There are multiple survey articles that provide
an overview of the insights gained so far [14], [19], [28].
In addition, the U.S. Department of Energy (DoE) provides
an AI Risk Management Playbook in the form of an online
catalogue of risks and mitigations specific to AI technology
[40] and Microsoft Security has published best practises for
AI Security that include a series of security controls that
are organized along the life cycle of AI applications [30].
The Open Worldwide Application Security Project (OWASP)
provides a security and privacy guide for AI that contains a
collection of security threats introduced by AI [29].

On a more abstract level than the above-mentioned re-
sources, multiple guides for managing risk in AI and building
secure AI applications are available, including the Artificial In-
telligence Risk Management Framework (AIRMF) and accom-
panying playbook by the U.S. National Institute of Standards
and Technology (NIST) [26] and the Secure AI Framework
(SIAF) Approach by Google [13]. These could be a basis
for refining our preliminary risk analysis into concrete risk
management for individual AI applications.

Finally, some tool support for hardening the security of AI
applications is already available, ranging from the Adversarial
Robustness Toolbox (ART) Python library for implementing
attacks to test the security of ML systems [37], to the TextAt-
tack Python framework for adversarial attacks on NLP [24], to
the Dioptra testbed that supports the testing of ML applications
(focus: image classification) against a range of attacks [3].

All of the above-mentioned resources consider AI security
in general and are not tailored to the space domain. We
are aware of three existing works that consider AI security
in the space domain. Firstly, the SPARTA matrix by The
Aerospace Corporation, which provides a knowledge base on
adversarial actions against spacecraft, covers poisoning of AI
training data and sensor spoofing [38]. To date, it does not
cover any other AI-specific threats explicitly. Secondly, the
position paper by Cyr, Long, Sugawara, and Fu focuses on
the attack surface introduced by sensor spoofing [6]. It is
complementary to our risk analysis, because it does not take
into account any threats outside sensor spoofing, but provides
a detailed analysis of the threats related to sensor-spoofing
attacks on the different subsystems of spacecraft. Thirdly,
Breda, Markova, Abdin, Jha, Carlo, and Mantı identify three
exemplary vulnerabilities introduced by AI in space systems:
manipulated training data is used and leads to wrong output
of on-board remote sensing systems, anomalies in the system
health check are overlooked or non-existing anomalies are
reported, and mechanical arms are operated incorrectly and

damage space assets [4]. With respect to countermeasures,
they give the high-level recommendation to pair traditional
cybersecurity countermeasures (like, e.g., encryption and zero
trust) with new measures that should be developed to determine
and handle the degree of uncertainty in AI outputs.

B. Standardization of AI Security

The standardization of AI in general and of cybersecu-
rity for AI specifically are currently in progress. Detailed
overviews of the related standardization efforts are available,
e.g., from the European Union Agency for Cybersecurity
(ENISA) [2] and in the German Standardization Roadmap on
Artificial Intelligence [41]. We briefly highlight the most re-
lated international and European standardization efforts below.

Characteristics for the quality of training data, including
possible measures to quantify the data quality, are addressed
in the ISO/IEC 5259 series of international standards. For
our analysis, the most relevant characteristics are diversity
(absence of bias) and identifiability (vulnerability to oracle
attacks). The standard ISO/IEC 25059 provides a quality model
for AI applications as a whole, which includes security in terms
of confidentiality, integrity, non-repudiation, accountability, au-
thenticity, and an AI-specific dimension called intervenability,
which is the “degree to which an operator can intervene in an
AI system’s functioning in a timely manner to prevent harm
or hazard” [17]. The ISO/IEC Technical Report 27563 collects
best practises with respect to AI security [16]. It reports on a
study across different AI use cases and highlights attention
points that include poisoning, adversarial attacks, and model
stealing. The ISO/IEC Standard 23894 provides guidance on
risk management in AI, emphasizing in particular that AI is a
fast-evolving field and AI systems themselves evolve through
continuous learning, such that risk analysis for AI needs to be
dynamic with regular reviews and improvements [15]. Further
ISO/IEC international standards on AI are expected to be
published in the near future, including, e.g., ISO/IEC 27090
on guidance for addressing security threats in AI.

On the European level, the European Telecommunications
Standards Institute (ETSI) has published multiple group reports
on AI security, including a threat ontology [10], a report on
countering attacks on training-data integrity [8], and a report on
countermeasures to attacks on AI in general [9]. Moreover, the
European Cooperation for Space Standardization (ECSS) has
developed a draft standard in the form of the ML Qualification
Handbook [7]. The handbook suggests to test machine-learning
models according to coverage criteria (e.g., branch coverage
in decision trees or coverage of neuron activation in Neural
Networks). To evaluate a system’s vulnerability to attacks (e.g.,
poisoning, adversarial examples), the handbook recommends
adversarial testing. In addition, formal verification can be
applied to complement the testing efforts.

VII. CONCLUSION

In this article, we described our preliminary risk analysis
that focuses on the security threats that AI introduces to
space-domain applications. We then presented a corresponding
collection of security controls for the mitigation of the risks
identified in the analysis. Our motivation was that due to the
complexity of AI technology and the high security criticality
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of space-domain applications, it is crucial to base the develop-
ment of future space-domain AI applications on a systematic
risk analysis that is tailored to the specific application context.
We hope that our preliminary results can serve as a basis for
a comprehensive risk analysis for AI in space in general and
for the refinement of such an analysis to concrete applications
from the different use-case categories.
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