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Abstract—The alert investigation processes junior (Tier-1)
analysts follow are critical to attack detection and communication
in Security Operation Centers (SOCs). Yet little is known on
how analysts conduct alert investigations, which information
they consider, and when. In this work, we collaborate with
a commercial SOC and employ two think-aloud experiments.
The first is to evaluate the alert investigation process followed
by professional T1 analysts, and identify criticalities within.
For the second experiment, we develop an alert investigation
support system (AISS), integrate it into the SOC environment,
and evaluate its effect on alert investigations with another cohort
of T1 analysts. The experiments observe five and four analysts,
respectively, conducting 400 and 36 investigations, respectively.
Our results show that the analysts’ natural analysis process
differs between analysts and types of alerts and that the AISS
aids the analyst in gathering more relevant information while
performing fewer actions for critical security alerts.

I. INTRODUCTION

Security Operation Centers (SOCs) are tasked with mon-
itoring the security of IT and non-IT infrastructures. Their
complexity is rapidly increasing as new detection technologies,
logging capabilities, and tooling to conduct incident investiga-
tions become available and part of day-to-day operations. De-
spite a large amount of effort being spent on automation [1]–
[4], human analysts are, and are set to remain, at the forefront
of security alert analysis [5]. Human analysts are tasked with
investigating alerts that cannot be automatically classified [6]
or whose automatic classification is too uncertain to be trusted,
to identify possible signs of ongoing attacks from alert and
related log data. Importantly, junior analysts (generally re-
ferred to as tier-1 analysts) play the critical role of quickly and
reliably finding attack signals and escalating them to higher
tiers in a SOC for in-depth investigations and potentially
reporting the detected incident to the monitored network [7].
It is therefore crucial that tier-1 (T1) investigations account

for all relevant evidence needed to make an informed decision
about a specific attack. Recent related work [8] highlighted
the importance of “structuring” the analyst’s work around
information categories aimed at capturing what information
analysts ought to consider. However, it is currently unclear
how the T1 investigation process “naturally” unfolds and to
what extent it covers all relevant information before leading
to a decision. Importantly, understanding the gap between T1
investigations and an “ideal” investigation process would allow
the development of better tools supporting analyst investiga-
tions and may help SOC managers in devising more effective
analysis and training processes within their SOC. Although
previous research investigated (cognitive) tasks related to the
workflow of SOC analysts [7], [9]–[12], the present study is,
to the best of our knowledge, the first taking an information-
driven approach to analyze the alert investigation process of
security analysts in a real SOC, and integrating related insights
in an operational tool supporting their decisions. To do this,
in this work we address the following research questions:

1) RQ1: What type of information do T1 analysts consider
when classifying alerts, what sources do they rely on to
collect it, and to what extent does this depend on the
type of investigated alert?

2) RQ2: To what extent does the analysis process followed
by different T1 analysts vary between (a) alerts of
different types and (b) analysts?

3) RQ3: Can the T1 analyst alert investigation process
be improved by the addition of an alert investigation
support system, and how does that impact the collected
information during an investigation?

To answer RQ1 and R2, we (1) conduct an experiment (ES1)
employing a think-a-loud protocol with five T1 analysts em-
ployed in a collaborating SOC to investigate what information
they consider during the analysis process of 400 security alerts;
(2) identify inefficiencies in the analysis process in terms of
stability and considered information. To answer RQ3, we (3)
develop an Alert Investigation Support System (AISS) tool,
integrated in the collaborating SOC’s SIEM and (4) run a
second study (ES2) with a different cohort of T1 analysts
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employed at the same SOC to evaluate whether the devised
tool effectively addresses the inefficiencies identified in ES1.
Our contribution is multifold. Through ES1, we provide novel
insights on how the investigation process of T1 analysts
unfolds for alerts of different types. ES1 is the first study
of its kind conducted in a real analysis environment with
professional (junior) T1 analysts. We find that analysts often
rely on implicit knowledge or assumptions about the inves-
tigated alert without considering all relevant evidence. The
investigation process generally unfolds in a disorderly manner,
with frequent context changes in the SIEM environment, which
may lead to inconsistent reporting on investigation results. To
investigate whether technological support can help analysts
in their investigations, we develop a dedicated AISS follow-
ing [8], and conduct a controlled experiment (ES2) to evaluate
how the AISS impacts the analysts’ investigation process. We
find that the AISS helps analysts conduct better informed
investigations. Critically, analysts using the AISS collect all
relevant information related to actual attacks with significantly
fewer actions (i.e., faster) than analysts not employing the tool.

This paper unfolds as follows. Section II introduces the
background on T1 analysts in SOCs, and Section III discusses
related work. ES1 is presented in Section IV; the AISS tool
and ES2 are presented in Section V Finally, Section VI
discusses our findings and addresses the limitations of our
study, while Section VII provides conclusions.

II. BACKGROUND

A. SOC and tier-1 analysts

Security Operation Centers (SOCs) provide network mon-
itoring and attack detection services to ensure the security
of networks and infrastructures. At first, incoming data such
as network traffic or system actions are transformed into
security events using technology from intrusion detection
systems (IDSs) employing techniques from static detection,
dynamic systems, machine learning and others [8]. The large
volume of security events is aggregated into logs and alerts
and is presented in so-called SIEM (Security Information and
Event Management) systems which SOC analysts utilize to
investigate potential security incidents [6]. However, effective
IDSs and SIEMs do not provide a one-size-fits-all solution
for SOC alert investigations. Oftentimes, data-driven problems
such as low visibility of devices and networks [13], high
volume of alerts [14] and high variety in available data [9]
make alert investigations a mentally demanding task [12],
which in turn contributes to high rates of burnout for SOC
analysts [5], [15]. Furthermore, the operational process used to
investigate alerts often depends on the specific SOC, especially
as the relevant process becomes more technical and task-
oriented [6], [16].

Organizationally, SOCs oftentimes structure their operations
through a tiered system of analysts from tier-1 (T1) ‘junior’
analysts, to higher tiers (T3 or T4) [12], [17], [18]. T1
analysts investigate the high volume of incoming security
alerts and discern interesting security events from benign
events [8]. Alerts that possibly represent more severe incidents

are escalated to higher tiers for analysis. Since T1 analysts
control which alerts are considered by higher tiers, correct
and efficient alert investigations by T1 analysts are crucial,
as wrongfully dismissed attack-related alerts may lead to a
significant delay in detecting the attack and thus a delayed
response. Despite the criticality of T1 analysts, the process of
collecting, connecting and interpreting the information that the
analysts acquire is not yet understood in the literature.

B. The “Threat Analysis Process (TAP)”

In this work, we consider the types of information that
analysts can observe and employ to explore the natural alert
investigation process(es) analysts follow. To define information
types, we rely on the framework defined by Kersten et al. [8],
who devised a structured threat analysis process (hereafter
referred to as the TAP for brevity). Table I defines four
different types of information (referred to as “Information
Category”) that analysts can employ for alert investigations.
In addition to providing a framework of information types
for alert investigations, the TAP describes an order in which
the information types should ideally be considered to reach
a well-informed conclusion. This order is: Relevance Indica-
tors, Additional Alerts, Contextual Information and Attacker
Evidence [8]. The TAP proved promising in improving the
accuracy of alert investigations conducted by junior analysts.
The evaluation carried out in the work of Kersten et al. [8]
shows that the odds of correctly classifying an alert increase
by 167% when analysts follow the TAP.

III. RELATED WORK

The work of SOC employees have been extensively
investigated. However, previous research has often focused
on the workflow of the SOC as a whole [9]–[12], or adopted
an organizational perspective [5], [16], [19], [20], rather
than taking the perspective of a SOC analyst. Other research
analyzes tasks within a SOC such as triage analysis [7] or
rule management [21].

Among the works that conduct cognitive task analyses
(CTA) on SOC analysts, the main difference is in the scope
of what the task of a SOC analyst is, resulting in differences
in how specific the defined actions of SOC analysts are.
For example, [12] performs a CTA on the operations of
SOC analysts and their decision making process. The authors
identify key analyses performed by T1 analysts (such as triage
analysis), as well as those performed by higher-tier analysts
(such as escalation analysis). By combining the workflow
of multiple key analyses, the authors devise a generalized
workflow model for SOC analysts.

Differently, Gutzwiller et al. [9] took a more scoped ap-
proach and conducted a CTA of SOC analysts with a focus on
how analysts develop situational awareness and the sources in
which analysts gather their data to conduct their investigations.
The authors highlight the complexity of alert investigations in
SOCs where analysts handle large volumes of data from many
sources. Furthermore, the authors stress that analysts need to
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TABLE I
TYPE OF INFORMATION SOC ANALYSTS EMPLOY TO CLASSIFY ALERTS ACCORDING TO KERSTEN ET AL. [8].

Information Type Definition Order References

Relevance Indicators (RI) Information to classify whether the alert under investigation is even
relevant for the SOC, based on the signature and the scope of the customer.

1 [12], [14]

Additional Alerts (AA) Alerts related to the current alert that the analyst is investigating. This may
be previous instances of the same alert triggering or alerts that surround
the current alert.

2 [11], [12]

Contextual Information (CI) Information about the behavior and other observables of the involved
internal host.

3 [2], [11],
[14], [16]

Attack Evidence (AE) Any evidence relating to the alleged attack including the type of attack,
attacker and any indication of success.

4 [12], [14]

connect the collected data to interpret the alert, which further
conveys the complexity of alert investigations.

Zhong et al. [7] captured traces of the triage analysis process
with respect to the actions performed and the hypotheses
generated by the analyst throughout the task. Their results
show that analysts employ different strategies to navigate
and interpret the large volume of data considered during the
analyses. In later work, Zhong et al. [4], [22] automate the
triage analysis process using operation traces collected from
expert analysts. They remark that the high performance of their
automated tool depends on the quality of the collected traces,
which in turn depends on the (however “good” or “bad”)
judgment of the analyst. Moreover, their approach considers
actions such as “searching” or “filtering”, yet the rationale
why the analyst performs such actions and what information
is obtained from these actions remain unclear.

Differently, Cho et al. [20] and Sundaramurthy et al. [19]
investigated the process of a SOC from an organizational per-
spective. Both works stress the importance of tacit knowledge
(as opposed to explicit knowledge) on SOC operations. Cho
et al. [20] conducted ten interviews with SOC analysts and
managers to extract their thought processes in three hypo-
thetical attack scenarios. The authors stress the limitations of
conducting interviews with hypothetical scenarios, as opposed
to observing analysts in real life. Furthermore, the authors
note that it is especially challenging to capture the thought
process of new and inexperienced analysts with complex
hypothetical attack scenarios. This suggests that junior analysts
are not used to complex attack scenarios, possibly because
their task often consists of more simple alert investigations.
Furthermore, most of the initial alerts they are tasked to
investigate are not worth escalating, as also found in other
works [14]. However, it is important to capture the process of
how junior T1 analysts perform complex alert investigations,
as it is part of their mandate to identify “escalation-worthy”
alerts that higher-tiered analysts should further investigate.
Unlike Cho et al. [20], Sundaramurthy et al. [19] took an
anthropological approach with real-life observations to study
the SOC ecosystem. The authors find that a SOC is dynamic in
nature: as the external world changes and new attacks develop,
SOCs adapt their tools and processes to accommodate those
changes. In later works [5], [16], [23], the authors highlight

that different SOCs utilize different workflows through their
organization. In addition, the authors build tools to aid the
analysis processes, stressing the importance of introducing
technology that supports SOC analysts. Sundaramurthy et
al. [5] report that the tools they developed did not remain
part of the SOC operations after the study, highlighting that
creating tools capable of fitting a SOC workflow is a difficult
task. In this paper, we work closely with a SOC to identify
issues and inefficiencies in the analysis process followed by
their analysts, and build a tool integrated in the SOC’s SIEM
interface to address those.

IV. EVALUATION STUDY 1 (ES1)

A. ES1 Methodology

Study goals. ES1 aims to evaluate the natural processes of T1
analysts conducting alert investigations for incidents leading to
a success attack (Att), or no attack (NAtt). More specifically,
our objective is to evaluate the types of information analysts
acquire for both Att and NAtt alerts, identify the types of
alert investigation processes between different analysts and
alert types, and identify the inefficiencies of such processes.

Overview of the method. To answer our first two research
questions, we collaborated with a commercial SOC (hereafter
referred to as “the SOC”) which offers network monitoring
services for the education, IT services and manufacturing
sectors. We conducted a think-aloud experiment with five
junior T1 analysts recruited from the SOC. The analysts were
tasked with conducting a total of 400 alert investigations on
real data from the SOC. As cyber-attacks are relatively rare
occurrences in real SOC data [24], we followed [24] and
injected ten attacks into the SOC detection environment by
replaying attack-related network traffic into the SOC sensors.
We modified timestamps and target IP addresses to ensure that
the injected attacks are plausible in relation to the monitored
infrastructure and data collection. We manually transcribed
analysts’ verbalization of their security investigations and
devised a coding scheme through an iterative process in
collaboration with a senior analyst employed at the SOC.
We then applied the coding scheme to the 400 investigation
transcripts. The coding was performed by the two leading
researchers. Given the difficulty and highly technical nature
of the transcript data, the coding process was structured in
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batches within which each researcher would code a number
of the same transcripts to monitor for coding consistency.
The SOC. The collaborating SOC provides network monitoring
services to one medium to large European university and
numerous SMEs in IT, health, and manufacturing industries.
The SOC relies entirely on (heavily customized) open source
software based on the Security Onion [25] Linux distribution.
Alert data is generated by a mixture of Suricata signatures
for network traffic inspection, and Sigma rules for logs (from
Windows/Linux hosts systems, network devices such as fire-
walls, etc.). The SOC permanently employs 7 employees (of
which 4 conduct security monitoring) and every educational
semester recruits two to nine interns as junior T1 analysts from
affiliate MSc-level cybersecurity programs. This procedure is
akin to that followed by competing SOCs in the region. The
recruitment procedure consists of an initial assessment of the
prospect analysts skill set (both technical and communicative)
and includes a training program on alert analysis and SOC
operations. The training consists of a two-week period in
which new analysts attend in total eight theoretical training
sessions: three on alert investigation, two shorter sessions on
technical skills relating to OSINT and analyzing pcaps, and
two short sessions relating to procedures within the SOC (e.g.,
customer communication and escalation procedures). Addi-
tionally, new analysts complete multiple hands-on training
sessions, in which they are asked to analyze a plethora of alerts
with continuous feedback from an experienced T2 analyst.

After the training phase, T1 analysts are responsible for
classifying each incoming alert according to the SOC’s alert
taxonomy. The alert classification taxonomy for T1 analysts
consists of two major categories: Att and NAtt. Att alerts
are alerts that must be escalated (with the accompanying
information collected during the alert investigation) to the T2
analyst, while NAtt alerts are dismissed. The SOC considers
NAtt alerts any alert related to false positives (such as access
to legitimate websites flagged as C&C traffic), benign scans,
minor policy violations from network users, and failed attack
attempts on internet-facing assets. Alerts related to successful
attacks, e.g., a successful exploitation attempt, are considered
Att and must be escalated for further investigation.
The Subjects. For this experiment, we recruited five junior
T1 analysts from the SOC pool of interns.1 As the SOC,
similarly to its competitors, recruits junior analysts from the
student pool of the MSc cybersecurity track at a medium-
to-large European technical university, the educational back-
ground of the subjects is uniform. Furthermore, given that
SOC internships overlap with the educational semesters of the
university used for recruitment, all subjects have an identical
work experience of approximately 3 months. We opted for
an approach to recruit subjects with similar backgrounds to
reduce confounding factors that can impact the process in

1SOC analysts work in fixed schedules to ensure that a sufficient number
of analysts monitors alerts at all times. As such, they are a rare resource. The
sample size in this study is comparable to that of related works especially
when considering SOC analysts specifically [5], [19]–[21]. Limitations are
discussed in Sec. VI-A.

TABLE II
ALERT DISTRIBUTION ACROSS ALERT CATEGORIES.

Category Amount Alert Classification

C&C 12 Att
Malware (succ.) 10 Att
Malware (not succ.) 29 NAtt
Policy 35 NAtt
Scan 114 NAtt

Total 200

S4

S5

S8

S10

S1

S2

S7

S10

S3

S4

S7

S9

S2

S3

S6

S8

S1

S5

S6

S9

20 Alerts

80 Alerts

Analyst 1 Analyst 2 Analyst 3 Analyst 4 Analyst 5

Fig. 1. Distribution of analysis scenarios assigned to the five analysts.

which T1 analysts investigate alerts. The limitations of this
approach are discussed in Section VI-A.

Alerts. As actual attacks are rare within the SOC, it is in-
feasible to collect enough real escalation-worthy alerts within
the experimental time frame. Yet, it is critical to understand
how analysts investigate escalation-worthy alerts, as they have
the greatest impact if investigated incorrectly. Therefore, we
injected ten attacks into the SOC detection environment (i.e.,
without launching any actual attack on end systems) and
generate 22 Att alerts. We then sample another 178 NAtt
alerts from the real-life environment of the SOC, for a total
of 200 unique alerts. Details on attack injection and alert
sampling are provided in Appendix A. The distribution of
the final 200 (Att, NAtt) alerts across the different “rule
categories” [26] attribute defined in the SOC is shown Table II.

Experimental setup. Figure 1 provides an overview of our
experimental setup. To keep the experiment manageable, we
split the set of 200 alerts into ten different “experiment runs”
(called “scenarios”) (S1, S2, ..., S10), each featuring 20 alerts.
Each scenario contains exactly one attack, and features all
alerts pertaining to that attack.2 All scenarios are completely
disjoint (i.e., no alert is shared across multiple scenarios). Each
analyst investigates four scenarios (for a total of 80 alerts).
To allow comparisons between scenarios, each scenario is
investigated by two analysts. This generates a total of 400
alert analyses. Figure 1 provides a graphical summary of the
scenario assignment to the five analysts.

To avoid creating overhead on top of the normal analysis
work performed by the analysts, the subjects participate in the

2This also assures realism of the experiment setup: an attack can take place
during one monitoring shift and T1 analysts are expected to escalate all of
these alerts to higher tiers.
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experiment during their normal working hours. In agreement
with the SOC management, the analyst’s time spent on the
experiment counts as regular service time in the SOC. Each
analyst attends four experiment sessions (one per assigned
scenario) over a period of one month. These experiment
sessions were conducted in-person in a lab environment. To
assure independent investigations, each session is attended by
only one subject at a time and analysts are instructed not to
discuss scenario findings with colleagues in between sessions.

During each experiment session, analysts are asked to
investigate the alerts within the assigned scenario in the same
way as they would investigate them as part of their daily job at
the SOC. Similarly, they are instructed to classify each alert as
Att or NAtt at the end of each investigation. Each scenario
consists of a list of alerts, each linked to its corresponding
entry in the SIEM environment. Analysts are instructed to
‘think-aloud’, i.e., to verbalize their thoughts during alert
investigations. We strove to be as passive as possible during
the alert investigations to not influence the subjects’ decision-
making process. However, subjects occasionally become silent
and stop verbalizing their thoughts. In those cases, we followed
best practices [27]–[29] and reminded them to follow the
think-aloud protocol. In order to reconstruct the analysis
process after the experiment, we recorded screen and audio
throughout the experiment sessions (see Section IV-A for
ethical considerations on collecting audio-visual data). Finally,
following the experiment, we manually transcribed the result-
ing 400 audio recordings for further analysis.

Coding strategy and coding scheme. Devising the
preliminary coding scheme. To understand the analysis
process and the types of information gathered by the analyst,
we devised a coding scheme to apply to the set of investigation
transcripts. We code concepts related to information types
collected by analysts (RQ1) separately from concepts related
to the process they follow (RQ2). Therefore, we divide
our coding schema into two main independent categories:
input (to answer RQ1) and process (to answer RQ2). We
define input as any verbalization indicating an acquisition
of information pertaining to the security analysis such as
observing a network log or a potentially malicious IP address.
Furthermore, we also consider any verbalized recollection
of information (e.g., remembering that an alert is a common
false positive) input as well. We define process as
any verbalized action aimed at processing or acquiring
relevant information. Examples are checking the existence of
specific protocol-related logs or investigating the purpose of
a domain. We follow [8] to categorize input and process
codes into four types of information shown in Table I:
Relevance Indicators (RI), Additional Alerts (AA), Contextual
Information (CI) and Attacker Evidence (AE).

To populate the described coding structure with specific
codes, we conducted three brainstorming sessions among four
of the authors and a senior analyst with more than 4 years of
experience at the SOC, who regularly supervises T1 analysts.
In these sessions, we discuss the types of information that T1

TABLE III
INTER-RATER RELIABILITY THROUGHOUT THE DEVISING AND

APPLICATION STAGES OF THE CODING SCHEME.

Round input (%) process (%)

D
ev

is
in

g 1 - -
2 62 75
3 76 86

A
pp

lic
at

io
n 1 85 81

2 91 84
3 81 83
4 90 97
5 93 95

Total 88 88

analysts acquire (RQ1), where they acquire it from (RQ1)
and what specific actions analysts can perform to acquire
it (RQ2). Importantly, we establish the mappings between
the information collected by the subjects and the types of
information described in the past literature [8]. Note that at
this stage, we opted for a deductive approach relying on senior
analyst experience (as opposed to solely derive codes induc-
tively from the data) to first identify the main set of actions and
information that would be relevant to look for in the data. This
is critical because the T1 analyst’s job is highly specialized and
contextual in nature. Hence, an inductive approach from the
onset may have resulted in illogical categorizations of codes
that do not fit the context of that SOC. By contrast, we employ
insights from the analysts as guidance for the detailed, data-
driven coding procedure.

Finalizing the coding scheme. After devising the preliminary
codes, we refined the coding scheme through an iterative
coding process in three rounds, and involving two of the
authors of this paper. In each round, we randomly sampled
four alerts per subject (one per scenario). Therefore, in each
round, we sample 5× 4 = 20 alerts. The two authors leading
the coding efforts independently coded the set of 20 alerts
and compared the outcomes. For each round, we assessed
inter-rater reliability (IRR reported in Table III) by calculating
the joint rate of agreement. 3 Disagreements about assigned
codes were discussed between the two authors leading the
coding efforts and led to an iterative refinement of the coding
scheme. Actions taken include merging codes too similar to
distinguish, adding previously not considered codes, or tuning
the code definitions in the codebook. After 3 rounds of coding,
we verified the coding scheme with the T2 analyst to ensure
that minor modifications to the coding scheme still accurately
reflected the nature of actions performed by a T1 analyst. With
the approval of the T2 analyst, the coding scheme and the
related codebook were finalized.

3We found that many segments were only coded by one of the two coders.
This often occurs because subjects verbalize trivial actions with little impact
on the alert investigation. Therefore, we only consider codes for segments
that both authors find relevant. As this consideration was made after round 1,
we miss the IRR for that round.
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The final coding scheme. The final coding scheme separates
the information that analysts acquire from the actions the
analyst conducts (i.e., input and process) and maps them
to the information categories introduced in [8]. Furthermore,
our coding scheme contains an NA category for information or
actions for which a clear link to the framework described by
the aforementioned work [8] is missing. For input, we fur-
ther distinguish between information acquired from the SIEM,
external tools (i.e., any tools beyond the SIEM), or recollection
of previous experiences or any knowledge acquired in the
past. Differently, within process each information category
contains different possible actions. In total, input contains
15 distinct (category, codes) pairs, and process 29 (RI: 4,
AA: 2, CI: 15, AE: 6, NA: 2). The final coding scheme is
reported in Table VII in the Appendix.

Application of the final coding scheme to the transcripts. We
applied the final coding scheme in a series of five rounds where
in each round each of the two coders were randomly assigned
two scenarios (i.e., 40 alerts each). Figure 6 in the Appendix
shows an overview of the code application stage for one round.
In addition to the two assigned scenarios, every coder coded
four randomly selected transcripts of the other coder’s batch.
Therefore, in each round we coded 88 transcripts (i.e. (40 +
4)× 2 per coder), eight of which (i.e., four per coder) where
coded by both coders. Codes for these eight transcripts were
cross-compared to monitor the stability of inter-rater reliability
scores, and to resolve any remaining conflicts (all of which
revealed to be minor). The lower part of Table III shows the
inter-rater reliability throughout the aforementioned rounds.
We observe a final inter-rater reliability (on codes assigned to
relevant segments) of 88% for both input and process.

Evaluation strategy. To evaluate RQ1, for each code in
input we count the number of alert investigations in which
that code has been observed at least once (as opposed to the
number of times the code has been observed). This allows
us to evaluate whether an information type played a role
in an investigation while avoiding noise from variations in
verbalization rates, whereby the same information may be
repeated multiple times in one investigation. To aggregate
the counts by information category, we check the presence
of a code associated with that information category (see
Table VII in the Appendix). From these counts, we estimate
effect sizes using a set of mixed-effects logistic regression
models accounting for multiple measurements for subjects. We
consider a threshold α = 0.05 for statistical significance.

To evaluate RQ2, for each alert investigation we consider
the chronological order of applied process codes. To avoid
double-counting verbalized information multiple times within
the data (i.e., repetitions), we merge subsequent identical codes
as one. We evaluate the difference in the process of gath-
ering information across analysts by observing the different
information categories traversed throughout the investigation.
Additionally, we measure complexity by the number of coded
actions (i.e., the length of the aforementioned sequence of
chronologically ordered codes) per alert investigation.

Ethical considerations. This research was executed with
approval from our institution’s ethical review board, with
approval number ERB2022MCS20. We gained explicit and
informed consent from all participants to participate in this
experiment and to collect personal audio data from them
following the think-aloud protocol. To minimize the risk of
leaking any personal information, after transcribing the audio
data and coding the transcripts, the audio data has been
destroyed from all devices. Additionally, participant’s names
were anonymized moments after the think-aloud experiment
to disassociate their identity from the data (e.g., from any
performance evaluations at the SOC). Moreover, participants
were assured that participation in the study would in no way
affect their daily work conditions or employment.

B. ES1 Results

1) Types of acquired information (RQ1): Table IV provides
an overview of the number of investigations in which the
analyst gathered information for Att and NAtt alerts. An
overview further dividing the investigated alerts into rule
categories is shown in Table VI in the Appendix. In general,
analysts consistently acquire information related to CI (97%),
while only acquiring information related to other information
categories (RI, AA and AE) in about half of their investigations
(53%, 48% and 58%, respectively). Furthermore, we observe
that using the SIEM is the predominant way of acquiring
information. However, from the 223 investigations wherein AE
was acquired, we find that analysts used external tools in 160
of them. Use cases include employing external tools (such as
URLscan and VirusTotal) to investigate whether domains or
IP addresses are malicious. This is illustrated by Subject 2
remarking: “So here in the SSL server, I can indeed say that I
will use URLscan and virusTotal to investigate if there are any
indicators”. By contrast, for other information types (RI, AA
and CI), external tools were used in no more than 30 investiga-
tions. We observe that previous knowledge is more commonly
used to recall information pertaining to AA (22%) than other
types of information (RI:3%,CI:12%,AE:9%). Oftentimes,
analysts such as Subject 1 would note the regularity of certain
NAtt alerts appearing in their SOC by remarking: “We have
another SSH brute force, which happens quite often”. In addi-
tion, analysts are more often recalling previous knowledge to
gather AE for Att alerts (20%) compared to investigations in-
volving NAtt alerts. We notice that this is especially common
when analysts notice malicious IPs that they have encountered
before. Oftentimes, information from previous investigations
aids current investigations. For example, Subject 1 remarks:
“this was not the problematic one the problematic one was [the
IP] which sent [the] actual malware”, after observing two IPs
that made a connection to the victim. The earlier collected and
remembered information enabled the analyst to not repeatedly
check the maliciousness of each observed IP.

When considering the SOC’s taxonomy of alerts in relation
to the acquired information (ref. columns “Total” for each in-
formation category in Table IV), we observe that investigations
on Att alerts are more likely to acquire information related
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TABLE IV
COUNT FOR THE EXISTENCE OF EACH CODE IN INPUT FOR ALERT INVESTIGATIONS PER ALERT CATEGORY.

S=SIEM , P=PREVIOUS KNOWLEDGE, E=EXTERNAL TOOLS, TOTAL DENOTES THE UNION OF THESE THREE SOURCES

Relevance Ind. Additional Alerts Contextual Inf. Attack Evidence
Category (n) S P E Total S P E Total S P E Total S P E Total

Att (44) 35 2 5 35 16 10 0 22 43 3 7 43 29 9 35 39
(%) (80) (5) (11) (80) (36) (23) (0) (50) (98) (7) (16) (98) (66) (20) (80) (89)
NAtt (356) 168 11 25 175 103 77 0 170 344 46 18 344 156 26 125 194
(%) (47) (3) (7) (49) (29) (22) (0) (48) (97) (13) (5) (97) (44) (7) (35) (54)

Total (400) 203 13 30 210 139 87 0 192 387 49 25 387 185 35 160 233
(%) (51) (3) (8) (53) (35) (22) (0) (48) (97) (12) (6) (97) (44) (9) (40) (58)

to RI, as opposed to NAtt alerts (80% vs 49%, Coeff.: 1.8,
p :< 0.01). We notice that in most cases apart from Subject
4 which consistently checks RI, analysts already know the
rule to which most NAtt alerts trigger as such alerts are a
common occurrence in SOCs. For example, Subject 3 remarks
when double checking how the alert triggers “Most of the time
this alert triggered by some misconfiguration or transmission
of SIP packets.” after realizing that the subject has seen the
rule before and already knows how it triggers in the SOC.

Unlike RI, we find no difference in the proportion of
investigations where information related to AA is acquired
between Att and NAtt alerts (50% vs 48%, Coeff.:0.2,
p : 0.66). Regarding the collection of AA, we observe (despite
their short work experiences) only one case where an analyst
tries to understand how often the alert has been triggered in
the past from the SIEM interface for both Att and NAtt
alerts. Although analysts would often implicitly remark the
commonness of certain alerts, only Subject 3 performed a
search to see often an alert has been triggered before: “I
correlate other records [of this alert].”. This suggests that
to find AA information, analysts exclusively use the SIEM
system to find surrounding alerts as opposed to historical
investigations of that alert.

Similar to AA, we find no difference in the proportion of
investigations where CI is acquired between Att and NAtt
alerts (98% vs 97%, Coeff.:0.4, p : 0.70). This is to be ex-
pected as we observe that CI is collected consistently through
almost all investigations. Moreover, despite external tools
being used rarely to acquire CI, we find that investigations of
Att alerts are more likely to acquire CI via external tools than
investigations involving NAtt alerts (Coeff.:1.3,p :< 0.01).

Finally, similar to RI but unlike AA and CI, we observe that
investigations pertaining to Att alerts are significantly more
likely to acquire AE than in NAtt alerts (Coeff:1.9, p :< 0.01).
Considering the source of information, the use of external tools
to acquire AE is especially more prevalent with investigations
involving Att alerts compared to NAtt alerts (Coeff:2.0,
p :< 0.01). As most information relating to AE that subjects
acquire in our experiment relates to the (non-)maliciousness of
external hosts, it is understandable that analysts collect more
AE on Att alerts. Oftentimes, an investigation of a NAtt alert
ends before the analyst observers whether the external host is
malicious or not as they collect an critical information cue that
allows the analyst to conclude that an attempted attack was
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Fig. 2. Prevalence of actions for each information category as performed at
different steps of alert investigations.

unsuccessful. For example, when analyzing a false positive
where the internal host supposedly accessed many “malicious”
domains within a short time frame, Subject 4 said: “Here we
have a get request with the 404 and another 404. And that’s
[the case for] all of them.”. In investigations such as these, the
maliciousness of a domain is irrelevant as it simply did not
exist (anymore) at the time the internal host accessed these
domains. This phenomenon was commonly verbalized that
“404” was expressed as a direct reason to dismiss the alert
for 24 investigations on NAtt alerts.

2) Alert investigation process (RQ2): Figure 2 visualizes
the rate at which analysts seek information of each type at
different stages of an investigation. Each row corresponds
to an analyst, and columns to alert types. Step counts (x-
axis of each plot) indicate at which point in an investigation
the analyst takes an action pertaining to a given information
type. The size and color of the dots denote the proportion
of investigations of that analyst (say, Subject 1) for that alert
type (say, Att) during which an action pertaining to a certain
information category (say, AE) was taken at that step (say,
Step 2). Hence, circles indicate how frequently an action of a
certain type will appear at a certain step given an investigation
performed by that analyst on that alert type. We observe that
emergent patterns differ widely among analysts, suggesting
that each follows a different “sense-making” process of alert
data. For example, Subject 4 and 5, follow the TAP described
in [8] more often (as can be seen from the diagonal patterns
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going from bottom left to top right) than Subjects 2 and 3,
where the pattern shown in Figure 2 is more chaotic. For
example, Subject 5 would always start an investigation of
an Att alert and some NAtt alerts by checking the rule of
the alert. Furthermore, we observe through the lengths of the
emergent pattern (i.e., the total number of steps) that some
analysts, such as Subject 3, often switch their investigation
back to CI as opposed to acquiring CI first and other
information categories later. An example that illustrates this is
an investigation where Subject 3 alternated between opening
logs (i.e., CI), observing an IP and checking its maliciousness
(i.e., AE), realizing that they opened the wrong log, searching
for the new log (i.e., CI), opening the log and again verifying
the IP (i.e., AE). This process repeated eight times, making the
alert investigation more inefficient than finding the log, verify
that it is the relevant log related to this alert and then check
the maliciousness of the relevant IPs in them.

Considering the different alert types, investigations on Att
alerts appear to perform actions pertaining to all information
types more often than NAtt alerts. Meanwhile, actions to
gather more CI appear to be more prevalent in NAtt alerts as
opposed to other actions. Interestingly, we observe that Subject
1 performs more actions relating to AA when investigating
NAtt alerts as opposed to Att alerts. Similarly, actions
pertaining to AA and CI appear to be conducted in later phases
of an investigation for Att alerts while many investigations
for NAtt alerts (especially for Subjects 1, 2 and 3) oftentimes
start with an action to collect CI. Furthermore, we find
that analysts often expect evidence to dismiss a commonly
occurring alert from information pertaining to CI. This is
best illustrated by an example where Subject 1 was analyzing
a simple scan alert. Subject 1 starts the investigation by
verbalizing: “Do we have a response on the con[nection]
log?”, indicating that the subject had no interest in checking
other relevant information first as the subject was hoping for
a failed connection attempt to quickly dismiss the alert.

In terms of the number of executed actions (see also
Figure 7 in the Appendix), across all investigations analysts
perform a median of 4 actions per investigation. When con-
sidering the alert types separately, we find that the median
number of actions performed for Att alerts is 8 steps, double
the number of steps corresponding to NAtt alerts, indicating
that NAtt alerts are less complex to analyze than Att alerts
(W = 3184, p =< 0.001 for a Wilcoxon signed-ranked test).

3) Observations on experimental outcomes: Despite previ-
ous works emphasizing that acquiring RI and AA is crucial for
an alert investigation [8], we observe that analysts only acquire
this type of information in about half of their investigations.
Moreover, we observe that analysts seem to alternate the
collection of different types of information relatively often,
creating unstable patterns across alerts and analysts. This sug-
gests that analysts struggle to follow an orderly investigation
process. Further, the continuous contextual changes needed
to switch from external tools (to collect AE information) to
the internal SIEM can be time-consuming and is oftentimes
cognitively taxing [30].

V. EVALUATION STUDY 2 (ES2)

To answer our third research question, we first present the
Alert Investigation Support System (AISS) [31] we developed
to mitigate the issues identified in ES1: disorderly investigation
processes and incomplete collection of information. We then
describe the methodology followed for ES2 and its results.

A. Proposed Alert Investigation Support System

We developed an AISS that integrates the structure of
the analysis process proposed in [8] in the Security Onion
Console UI (i.e., the SIEM interface that the collaborating
SOC employs)4. The main interface of the AISS is depicted in
Figure 3, with data from a real event for illustration purposes.
The AISS appears at the top 1 of the list of alerts in
the SIEM interface. Analysts can pin alerts to the AISS so
that the alert can be analyzed with AISS support 6 . For
each pinned alert, the AISS displays four tabs 3 , each
corresponding to an information category of the TAP. Each tab
contains text boxes 5 with more specific information related
to the information category which the analyst may collect.
Information that is trivial to collect (but often not collected
as shown in Section IV-B) is automatically retrieved from
the alert data and displayed next to the relevant information
category. Moreover, the AISS automatically generates SIEM
queries to retrieve some information, such as how often an
alert has triggered in the past or to show other alerts involving
the same IP addresses as the alert under investigation. These
queries are fired when the analyst clicks on the name of
the specific information category (if and only if there is an
automatic query to acquire the corresponding information).
When an analyst acquires all the needed information about a
certain information category, the analyst can mark the items as
complete by checking the corresponding boxes in the interface.
Information categories for which the analysts have already
acquired all the information are marked by a green circle 2 .

In summary, while not forcing analysts to follow the TAP,
the AISS serves as (1) a reminder of the different analysis
process steps, (2) a repository of information or queries to
fetch relevant information for alert investigations, and (3) a
notepad to organize observations during the investigation.

B. ES2 Methodology

Study goals. The goal of ES2 is to evaluate whether the
AISS presented in Section V-A improves the alert investigation
processes observed in ES1. More specifically, we aim to
evaluate potential improvements in the investigation processes
with respect to the identified inefficiencies in ES1. We consider
Att and NAtt alerts separately when evaluating any potential
improvements.

Overview of the method. For ES2 we ran a similar experiment
to ES1 (see Section IV-A) approximately one year later
(i.e., after evaluating results from ES1 and developing and

4The code of the developed AISS is portable to other web-based SIEM
interfaces. The AISS code will be released as open source software under
CC-BY 4.0 [31].
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Fig. 3. The Alert Investigation Support System integrated in the SOC SIEM environment.

integrating the AISS in the SOC SIEM). However, due to
resource and time constraints at the SOC, ES2 differs from
ES1 in the number of analysts participating, and the number of
alerts to investigate. We discuss these limitations in Sec. VI-A.
For the data analysis we adopt the same code book and coding
procedure as in ES1.
The Subjects. We recruited 4 junior T1 analysts from the
pool of interns of the SOC. All subjects followed the same
official recruitment and training procedure as subjects in ES1
(see Section IV-A) and come from the same recruitment
pool. As in ES1, at the time of the experiment, all subjects
have a work experience at the SOC of around 3 months.
The similar background and identical selection, intake, and
training procedure between ES1 and ES2 ensures subjects are
comparable between studies.
Alerts. Due to the aforementioned operational time constraints
on the side of the SOC, for ES2 we restricted the alert sample
to 18 alerts from the set of 200 alerts used in ES1. In order to
evaluate the effect of the AISS on the most critical alerts (i.e.,
the ones classified as Att according to the SOC’s taxonomy),
we opted to randomly select one alert from each injected
attack in ES1, resulting in 10 Att alerts in our experimental
set. The remaining 8 NAtt alerts were randomly sampled
from the totality of 178 NAtt alerts from ES1. This means
that all alerts investigated in ES2 are also investigated in
ES1. This allows us to directly compare the results of ES2
with the corresponding results in ES1, while keeping the
experimental setup compatible with the resources available at
the collaborating SOC. Furthermore, we used an environment
identical to that of ES1 (apart from the added AISS), such that
all alert and log evidence available to analysts in ES1 is also
available in ES2. This ensures a direct comparison between

the two experiments.
Experimental setup and ethical considerations. Similar to ES1,
we split the set of 18 alerts into two different “scenarios” (SA

and SB) of 9 alerts each, each completely disjoint from the
other. We assign SA to Subjects 1 and 2, and SB to Subjects 3
and 4; the subjects are asked to analyze alerts while thinking
aloud. This generates a total of 36 alert investigations over
18 unique alerts. Subjects were asked to use the AISS during
alert investigations. They were informed of the AISS features
before the experiment was carried out.
Transcript coding and inter-rater reliability. As we want to
compare the results of ES2 to those of ES1, we coded the
transcripts with the coding scheme we devised for ES1. Given
the lower number of transcripts in ES2, we applied the coding
scheme in a series of two rounds where in each round, each of
the two coders coded an identical set of 18 transcripts. Then,
we calculated the inter-rater reliability in an identical manner
to ES1 (see Section IV-A). We observe an inter-rater reliability
(on codes assigned to relevant segments) of 81% for input
and 84% for process.
Ethical considerations. to To mitigate ethical concerns, iden-
tical measures taken in ES1 (as described in Section IV-A)
were taken in ES2. Furthermore, ES2 was executed with the
same approval from our institution’s ethical review board as
ES1 (ERB2022MCS20).
Evaluation Strategy. To evaluate RQ3, we take an approach
similar to that of RQ1 and RQ2. Further, for ES2 we compare
the data collected in ES2 (treatment group) with the data
collected in ES1 (control group) for those same alerts. We
compare the counts of input code as shown in Table IV
and the chronological ordering of applied process codes
between the treatment and control group. Finally, we employ a
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set of Wilcoxon ranked sum tests to compare the investigation
complexities (measured by the amount of information analysts
collect before making a decision) of Att and NAtt alerts
between the treatment and control groups.

C. ES2 Results

1) Types of information acquired when using the AISS
(RQ3): Table V provides an overview of the number of in-
vestigations in which an analyst gathered information for Att
and NAtt alerts in ES2. We observe that in ES2, compared
to ES1, analysts more consistently acquire information related
to RI (100%), AA (89%) and AE in addition to CI (94%).
We find that with the AISS analysts oftentimes check the rule
signature to understand what attacks may trigger the alert but
also what normal traffic may cause it to be triggered as a false
positive. For example, Subject 1 (of ES2) remarks: “So is the
rule specific to an attack? Not necessarily because it’s JA3
hash.” referring to the fact that alerts triggering on JA3 hashes
result oftentimes in false positives (as the same TLS client
library can be shared by both malicious and benign software).

Considering the sources from which analysts acquire infor-
mation, we observe (similarly to ES1) that the SIEM is still
the predominant way of acquiring information. Furthermore,
external tools are oftentimes used to find AE (81%) and
revealing previously acquired knowledge was not uncommon
to acquire AA (31%). Overall, we find no compelling evidence
suggesting that the use of other sources increase through the
use of AISS in addition to subjects simply collecting a wider
range of information types for each investigation. For example,
6 out of the 7 times where RI was recalled by an analyst
was Subject 1 recalling the usefulness of the availability of
such information: “OK, internal to external. Triggers on some
bytes. Simply, yeah. OK, it has a reference URL link. Which
are usually very informative.”.

Considering the dichotomy of Att and NAtt alerts, we
find that the AISS group collects RI and AA information more
than the non-AISS group for both Att (RI: 100% vs 80%,
AA: 100% vs 50%) and NAtt alerts (RI: 100% vs 49%, AA:
75% vs 48%). We observe that the increase in acquiring AA for
both types of alerts comes from analysts more often checking
how often an alert has triggered in the past, while in ES1 this
information was rarely checked via the SIEM interface. For
example, Subject 3 remarks, while investigating an Att alert:
“Let’s look at the alert history. What is it? ... But it triggered
142 times. Well, OK. That’s a lot.”. Meanwhile, we find no
evidence that the AISS leads to an increase in acquiring CI
and AE for both Att and NAtt alerts.

2) Changes to the Alert Investigation process due to AISS
usage (RQ3): Figure 4 visualizes the rate at which analysts
seek information of each type at what stage of an investigation
(similar to Figure 2 in ES1). To aid a direct comparison
to ES1, we here aggregate the data of different subjects
within the same study to provide an overall view of analysts’
investigation processes across the two studies. For Att alerts
we observe that subjects using the AISS are more likely to
follow the TAP described by Kersten et al. [8] (as it can be

Interesting Not interesting

A
IS

S
N

o A
IS

S

0 5 10 15 0 5 10 15

RI

AA

CI

AE

NA

RI

AA

CI

AE

NA

Step

In
fo

rm
at

io
n 

C
at

eg
or

y

0.05

0.10

Prevalence

Fig. 4. Prevalence of actions for each information category as performed at
different steps of alert investigations for both the treatment and control group.

seen from the diagonal patters from bottom-left to top-right).
However, despite the use of AISS, subjects of ES2 commonly
alternate between seeking CI and AE similar to the non-AISS
group. This is especially evident in alert investigations that
take more steps. For example, one investigation conducted by
Subject 3 (of ES2) would alternate between the two types of
information as they could not find the relevant log to check
for “the malicious domain” similar to the example of Subject
3 in ES1. This is because the victim IP has accessed many
domains (thus creating many logs) during the time frame of
the attack. At some point, Subject 3 expresses hopelessness
and starts copying every domain the subject encounters in an
investigation: “All [the logs], the same thing. I mean I guess I
can copy this [to] VirusTotal”. Moreover, we find that analysts
using the AISS conduct fewer actions to seek information
outside the scope of the TAP than analysts without the AISS.
This is indicated by the lack of actions related to the “NA”
information category.

Taking into account investigations related to NAtt alerts,
analysts using the AISS are more likely to follow the TAP
compared to analysts who do not. Furthermore, we observe
that when using the AISS, analysts switch less frequently
between different information categories throughout the alert
investigation compared to analysts without the AISS, as can be
seen from the shorter patterns in Figure 4. Moreover, we find
that analysts employing the AISS acquire RI as the first step
of their investigation more often than the non-AISS group.
Similar to investigations pertaining to Att alerts, we also
observe that analysts who use the AISS perform fewer actions
to seek information outside the scope of the TAP than analysts
without the AISS for NAtt alerts, suggesting that the AISS
streamlines the alert investigation process into the information
categories described by the TAP.

Figure 5 shows the distribution of the number of actions
performed in each investigation for both alert types for the
AISS and non-AISS groups respectively. Considering all alert
investigations performed in ES2, the median number of (ver-
balized) actions performed in an alert investigation is 4.5.
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TABLE V
INPUT CODE PRESENCE IN INVESTIGATIONS OF DIFFERENT ALERT CATEGORIES USING THE AISS.

S=SIEM , P=PREVIOUS KNOWLEDGE, E=EXTERNAL TOOLS, TOTAL DENOTES THE UNION OF THESE THREE SOURCES

Relevance Ind. Additional Alerts Contextual Inf. Attack Evidence
Category (n) S P E Total S P E Total S P E Total S P E Total

Att (20) 20 4 6 20 20 9 0 20 19 0 5 19 15 1 19 20
(%) (100) (20) (30) (100) (100) (45) (0) (100) (95) (0) (25) (95) (75) (5) (95) (100)
NAtt (16) 16 3 8 16 12 2 0 12 15 0 3 15 6 0 10 11
(%) (100) (19) (50) (100) (75) (13) (0) (75) (94) (0) (19) (94) (38) (0) (63) (69)

Total (36) 36 7 14 36 32 11 0 32 34 0 8 34 21 1 29 31
(%) (100) (19) (39) (100) (89) (31) (0) (89) (94) (0) (22) (94) (58) (3) (81) (86)

0

5

10

15

20

25

Not interesting Interesting
Alert Classification

# 
of

 a
ct

io
ns

Use of AISS

No AISS

AISS

Fig. 5. The distribution of number of actions performed in an investigation
aggregated across all analysts per alert classification for treatment and control
groups.

Similar to ES1, we find that analysts perform significantly
fewer actions when investigating NAtt alerts compared to
investigations on Att alerts (medAkk = 5.5, medNAkk =
4.0,W = 103, p = 0.034). However, the difference in
actions required to analyze an Att alert over a NAtt alert
is less pronounced (difference of 1.5 actions as opposed to
4.0 actions). A one-sided Wilcoxon rank sum test reveals
that analysts perform significantly fewer actions to investigate
Att alerts when using the AISS (W = 311.5, p = 0.031).
Therefore, despite analysts still alternating between actions
related to CI and AE, we find that the general efficiency of
alert investigations for Att alerts is improved by the AISS.

Meanwhile, we find no evidence that the AISS reduces the
number of actions performed when analyzing NAtt alerts
(W = 3241.5, p = 0.828). Yet, from Figure 5 we observe that
the distribution is much less wider when analyzing NAtt alerts
using the AISS compared to not using the AISS. By contrast
to ES1, in ES2 we observe that analysts rarely dismiss alerts
based on information gained from one action. Instead, analysts
seek additional evidence to dismiss the alert. For example,
Subject 2 (of ES2), when investigating an alert relating to data
exfiltration, finds that no successful connection was established
between the attacker IP and the host (thus no data was
exchanged). Yet, Subject 2 continued investigating whether
the attacker IP is malicious and concluded after few failed
attempts: “So I don’t really understand the attack, but since I

know there were no successful connections, I’m going to label
it as NAtt.”, suggesting that not all thorough investigations
of NAtt alerts result in more meaningful information.

VI. DISCUSSION

RQ1: Information types and sources Our findings suggest that
although analysts acquire a variety of different types of infor-
mation in an alert investigation, CI is acquired regardless of
the analyst or alert type. This highlights the importance of CI
for analysts to determine whether an alert should be escalated
or not compared to the other information types. This is in line
with previous works [2], [12], [14], [15] stressing the criticality
of context around an attack and log data (which oftentimes
is part of CI). Meanwhile, we found that AA is much less
frequently considered across analysts, yet the incidence of AA
information seems invariant to the type of alert under investi-
gation. This raises the question whether other factors influence
the acquisition of AA information. Regarding RI and AE, our
findings show a much stronger effect of alert type in the
frequencies at which information of different types is acquired.
The lower acquisition frequencies of RI and AE in NAtt alerts
as opposed to Att alerts suggest that NAtt alerts require less
information for the analyst to conclude an investigation.

Considering the sources that analysts rely on to find infor-
mation, we find that analysts predominantly use their SIEM
system. However, AE information is more often acquired via
external tools than other information types, although at similar
rates than with SIEMs. This observation could be integrated in
future work to provide a more streamlined analysis interface
to the analysts. Moreover, our findings show that previous
knowledge is recalled mostly in collecting information pertain-
ing to AA. This suggests that information such as the history
of an alert is in many cases not information that is truly
acquired by an analyst but an already acquired information
that resurfaces in the mind of the analyst. The need to recollect
information as opposed to acquiring new information shows,
in line with previous work [20], the rooted tacit knowledge
among analysts. More research is needed to explore the
concrete effects of recalling tacit knowledge within the alert
investigation process specifically.

RQ2: Analysis process Our findings suggest that the investiga-
tion process an analyst follows varies widely among analysts
and across Att and NAtt alerts. Some analysts focus on one
type of information per step, while others chaotically switch
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context between actions aimed at gathering different types of
information. Future research can focus on exploring the natural
process in different SOCs serving different industries.

Moreover, we find that alerts that ought to be escalated (i.e.,
Att alerts) require more actions on average to investigate
than NAtt ones. Therefore, analysts are more likely to spend
time and cognitive effort when analyzing escalation-worthy
alerts. Since more complex tasks are generally harder
to automate, SOC employees and researchers aiming to
automate tasks within SOCs could focus on NAtt alerts,
such as scan-related alerts, rather than broader approaches [1],
[2]. Similarly, the tools developed for humans to assist in
alert investigations should place a stronger emphasis on Att
alerts, as these alerts require more complex investigations and
thus potentially require more aid.

RQ3: Role of an AISS on the investigation process Our findings
suggest that the proposed AISS improves the alert investigation
process with respect to the inefficiencies identified in ES1.
Firstly, analysts systematically and explicitly collect a wider
range of information types during alert investigations, in both
Att and NAtt alerts. The existing literature [8] has alluded
to gaps between what the T2 analyst expects in a report
and what the T1 actually reports. Although the cause of this
gap is unclear, enabling the analyst to explicitly collect such
information is a start to address this problem. Future research
can consider how often T1 analysts do not report collected
(yet relevant) information when escalating alerts.

Given from the results of ES1 that external tools are crucial
to find attack evidence which is especially relevant for the
more serious Att alerts, future research can focus on improv-
ing the efficiency of the analysts’ investigation processes on
these external tools. Additionally, as previous research [20]
suggests that communication within SOC employees is key
to demystifying tacit knowledge, future AISS can integrate
features to make this knowledge more explicit.

Interestingly, our findings suggest that the AISS affects the
alert investigation processes differently for Att and NAtt
alerts. For investigations pertaining to Att alerts, we find that
despite analysts often alternating between different contexts of
the investigation, the overall investigation requires fewer ac-
tions. This suggests that when the AISS is used, analysts need
less time to investigate and are more efficient without reducing
the quality of the alert analysis. This is critical for Att alerts
that must be analyzed and escalated as quickly as possible for
effective mitigation and response actions. Therefore, aiding
the T1 analyst’s efficiency for these alerts is crucial, even if
it comes at the cost of reduced inefficiency for other types of
alert. For investigations pertaining to NAtt alerts, our findings
suggest that analysts using the AISS alternate less between
collecting similar information throughout the alert investiga-
tion than analysts without the AISS. Therefore, the AISS
helps streamline the process and simplifies the most complex
NAtt alert investigations. The other side of the coin is that
the least complex alerts may become more procedural and
lengthier to investigate as analysts look for additional, yet not

meaningful, evidence after acquiring the necessary information
to dismiss an alert. This suggests that the AISS can help
analysts investigate the most complex or previously unseen
alerts, whereas trivial ones should be analyzed automatically.

A. Limitations
Subject generalizability. Despite collaborating with a commer-
cial SOC, we recognize that different SOCs operate differently
and employ different technologies to generate alerts and con-
duct alert investigations. Therefore, data collected from ana-
lysts from one SOC may not represent another SOC, especially
in SOCs that have more experienced T1 analysts compared to
students following an internship. Moreover, within the same
SOC we recognize that there is some difference in subject’s
skill sets despite identical work-related contexts. However,
these limitations may be mitigated by T1 analysts being,
by definition, juniors and often recruited from graduate-level
cybersecurity courses, meaning that difference in background
may be limited. Additionally, within the same SOC, analysts
oftentimes do receive identical trainings and collaborate with
other junior analysts.
Multiple observations. This limitation arises from a conscious
decision to keep the experimental setup as realistic as possible.
T1 analysts at the collaborating SOC are instructed to escalate
single alerts, not groups of alerts belonging to the same
investigation. Experimentally, this means that analysts in ES1
investigate the same attack (but not the same alert) multiple
times. However, only on one occasion did an ES1 analyst
explicitly mention noticing a specific alert belonging to an
attack they already investigated. This suggests that the effects
on the verbalized thought process of the subjects are minimal.

VII. CONCLUSION

In this work we conducted two experiments with five and
four T1 analysts respectively to evaluate the natural analy-
sis process for conducting alert investigations in SOCs and
to evaluate how and whether a proposed alert investigation
support system (AISS) can improve upon the natural alert
investigation process. Our results from the first evaluation
study show that the types of information analysts acquire
and the actions conducted is different across different alerts.
More specifically, we observed that the alerts that ought to be
escalated acquire a larger variety of information and actions by
the analyst, suggesting a further need to support analysts with
such investigations. Based on these identified inefficiencies,
we proposed an AISS to attempt to close the gap between the
different investigation processes and conducted another evalu-
ation study. Our study shows that an AISS can aid in reducing
the complexities for all alerts except the most trivial to analyze.
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[6] M. Vielberth, F. Böhm, I. Fichtinger, and G. Pernul, “Security operations
center: A systematic study and open challenges,” IEEE Access, vol. 8,
pp. 227 756–227 779, 2020.

[7] C. Zhong, J. Yen, P. Liu, R. Erbacher, R. Etoty, and C. Garneau, “An
integrated computer-aided cognitive task analysis method for tracing
cyber-attack analysis processes,” in Proceedings of the 2015 Symposium
and Bootcamp on the Science of Security, ser. HotSoS ’15. New
York, NY, USA: Association for Computing Machinery, 2015. [Online].
Available: https://doi.org/10.1145/2746194.2746203

[8] L. Kersten, T. Mulders, E. Zambon, C. Snijders, and L. Allodi, “‘give
me structure’: Synthesis and evaluation of a (network) threat analysis
process supporting tier 1 investigations in a security operation center,” in
Nineteenth Symposium on Usable Privacy and Security (SOUPS 2023).
Anaheim, CA: USENIX Association, Aug. 2023, pp. 97–111.

[9] R. Gutzwiller, S. Fugate, B. Sawyer, and P. Hancock, “The human
factors of cyber network defense,” Proceedings of the Human Factors
and Ergonomics Society Annual Meeting, vol. 59, pp. 322–326, 09 2015.

[10] E. T. Greenlee, G. J. Funke, J. S. Warm, B. D. Sawyer, V. S. Finomore,
V. F. Mancuso, M. E. Funke, and G. Matthews, “Stress and workload
profiles of network analysis: Not all tasks are created equal,” in Advances
in Human Factors in Cybersecurity, D. Nicholson, Ed. Cham: Springer
International Publishing, 2016, pp. 153–166.

[11] A. D’Amico, K. Whitley, D. Tesone, B. O’Brien, and E. Roth, “Achiev-
ing cyber defense situational awareness: A cognitive task analysis of
information assurance analysts,” in Proceedings of the Human Factors
and Ergonomics Society Annual Meeting, vol. 49, 09 2005, pp. 229–233.

[12] A. D’Amico and K. Whitley, The Real Work of Computer Network
Defense Analysts. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 19–37. [Online]. Available: https://doi.org/10.1007/978-3-
540-78243-8 2

[13] F. B. Kokulu, A. Soneji, T. Bao, Y. Shoshitaishvili, Z. Zhao, A. Doupé,
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APPENDIX A
INJECTED ATTACKS

Injected attacks.
1) Remcos RAT
2) RIG Exploit Kit and Dridex
3) Emotet and Trickbot
4) Qakbot and Cobalt Strike
5) Qakbot and Spambot
6) Hancitor and Cobalt Strike
7) Ghost RAT
8) BazaarLoader and Cobalt Strike
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9) MalSpam Brazil
10) Ursnif

To generate Akk alerts, we collected PCAP
network traffic related to 10 attacks from
malware-traffic-analysis.net [26], a website
containing multi-stage malware attacks. We injected the
PCAPs to the NIDS sensors generating the security alerts at
the SOC. Further details of the injected attacks are reported in
Appendix A. To preserve realism in the experiment, IP ranges
of the victims were modified to unassigned IP addressees
within the IP range of the monitored networks of the SOC.
We utilized the SAIBERSOC tool [24] to inject the PCAPs
into the SOC’s pre-production environment As NAtt alerts
are plentiful in the SOC we collected them directly from
the SOC environment. We collect over 300k security alerts
across a period of 17 days. To maintain the experiment setup
manageable, we sample 178 NAtt alerts from this set. As
there is a very strong class imbalance in alert data, we employ
a stratified sampling strategy using the “rule category” [26]
attribute defined in the SOC. The considered rule categories
for NAtt alerts are: Scan, Policy (i.e., potential policy
violations) and Malware (not succ.). From each of the rule
categories, we randomly selected a unique rule and sampled
a random alert generated by that rule.

APPENDIX B
APPLICATION OF THE FINAL CODING STAGE

Coder 2

Coder 1 set A: 40 transcripts

set B: 40 transcripts

set A: 4 transcripts

set B: 4 transcripts

set B: 4 transcripts

set A: 4 transcripts

Randomly
Select

Swap

TextText

Used for
calculating IRR

Fig. 6. Overview for one round in the application stage of the final coding
scheme.

APPENDIX C
NUMBER OF ACTIONS FOR EACH ALERT TYPE
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Fig. 7. The distribution of number of actions performed in an investigation
aggregated across all analysts per alert classification.
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Fig. 8. The distribution of number of actions performed in an investigation
aggregated across all analysts per rule category.
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TABLE VI
COUNT FOR THE EXISTENCE OF EACH CODE IN INPUT FOR ALERT INVESTIGATIONS PER RULE CATEGORY. C&C AND MALWARE (SUCC.) ALERTS ARE

ATT ALERTS WHILE OTHER ALERT SUBCATEGORIES ARE PART OF NATT ALERTS.

RI AA CI AE
Category (n) S P E Total S P E Total S P E Total S P E Total

C&C (24) 21 1 3 21 10 5 0 12 24 1 4 24 15 8 23 23
(%) (88) (4) (13) (88) (42) (21) (0) (50) (100) (4) (17) (100) (63) (33) (96) (96)
Malware (succ.) (20) 14 1 2 14 6 5 0 10 19 2 3 19 14 1 12 16
(%) (70) (5) (10) (70) (30) (25) (0) (50) (95) (10) (15) (95) (70) (5) (60) (80)
Malware (not succ.) (58) 36 3 6 39 19 12 0 28 50 4 2 50 36 6 34 44
(%) (62) (5) (10) (67) (33) (21) (0) (48) (86) (7) (3) (86) (62) (10) (59) (76)
Policy (70) 44 4 9 46 22 8 0 28 67 18 6 67 45 8 53 59
(%) (63) (6) (13) (66) (31) (11) (0) (40) (96) (26) (9) (96) (64) (11) (76) (84)
Scan (228) 88 4 10 90 62 57 0 114 227 24 10 227 75 12 38 91
(%) (39) (2) (4) (39) (27) (25) (0) (50) (100) (11) (4) (100) (33) (5) (17) (40)

Total (400) 203 13 30 210 139 87 0 192 387 49 25 387 185 35 160 233
(%) (51) (3) (8) (53) (35) (22) (0) (48) (97) (12) (6) (97) (44) (9) (40) (58)

TABLE VII
THE FINAL CODING SCHEME.

Information Category Code: input Code: process

RI

SIEM Checking the signature
External tools Checking signature age
Previous knowledge Checking the relevance of IP addresses

Checking threat relevancy

AA
SIEM Filter on involved IPs and alerts
External tools Filter on the alert name
Previous knowledge

CI

SIEM Checking for logs
External tools Inspecting protocol specific logs
Previous knowledge Investigating response codes

Investigating whether SSL established
Investigating whether DNS was successfully resolved
Investigating whether SSH successfully authenticated
Investigating target host information via zeek logs
Inspecting conn logs
Investigating the number of packets
Investigating number of bytes
Investigate ports used
Investigating the host name
Investigating/processing the purpose of the host
Check for new behavior from host
Check for normal behavior from host

AE

SIEM Investigating the hash of a file
External tools Investigate whether the domain is malicious or not
Previous knowledge Investigating how the attack works (e.g., google)

Checking the CVE
Investigate whether the IP address is flagged as malicious
Investigate related threats from IP

NA
SIEM Checking network decoded data
External tools Checking the security severity level
Previous knowledge
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